Abstract:
The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. The seismic source includes systems for driving the acoustic energy systems using electric energy concurrently from both the generator and an electric energy accumulator such as a capacitor or battery, systems for adjusting the weight on the acoustic energy delivery system by raising and lowering wheels individually and an active energy isolation to isolate the chocks and impulses of the acoustic energy delivery system from the remainder of the seismic source.
Abstract:
The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. Preferably a foot is arranged on the bottom end of the rod or piston for contact with the ground and by engaging the grid of motors to push down against the ground in a rapid progression, acoustic energy is created and delivered into the ground for geophones to sense and record. However, the rapid progression of pulses or sweep of seismic energy is delivered in a distinctive fashion as compared to a conventional upsweep or downsweep and the distinctiveness is also achieved by creating a designed cadence or timing such that each pulse in a series of pulses is not delivered in a regular timing. Several similar seismic sources may be employed where each is provided with its own distinctive series of pulses such that each may be identified within the data record and source separation from a number of seismic sources may be accomplished.
Abstract:
A well capping assembly includes a well cap structure configured to operatively couple to a wellhead structure for capping a fluid flow from a well. Also included is a capping frame operatively coupled to the well cap structure and configured to translate the well cap structure in at least one direction. Further included is a capping structure operatively coupled to the capping frame, the capping structure configured to be submerged in water and rigidly anchored to a sea floor surface.
Abstract:
The invention relates to a method for estimating pore pressure in subterranean shale formations such as gas- or organic-rich shale where pore pressure predictions based on either a resistivity log or a porosity-indicative log such as sonic tend to be inaccurate. The method involves combining the resistivity log with the porosity-indicative log using a Eaton formula to give an estimate of pore pressure which is accurate both for conventional water wet shale and for organic-rich shale.
Abstract:
A method of forming a tension leg platform (TLP) includes arranging a top tension riser (TTR) support system at one or more top tension risers, positioning the one or more top tension risers in corresponding ones of one or more TTR guide members supported by the TTR support system, connecting the TTR support system to a first column and a to a second column, and arranging a platform between the first and second columns.
Abstract:
An apparatus for correcting for deviation of an ambient magnetic field direction from a reference direction in a marine environment includes: an instrument assembly vessel configured to move through the marine environment; an inertial reference direction device disposed on the instrument assembly vessel and configured to measure a deviation of an aiming direction of the instrument assembly vessel from the reference direction; a reference magnetic compass disposed on the instrument assembly vessel and configured to measure a direction of the ambient magnetic field direction with respect to the aiming direction of the instrument assembly vessel and to transmit the measured direction; and a processor configured to receive the measured deviation and the measured direction and to calculate the deviation of the ambient magnetic field direction from the reference direction using the received measured deviation and direction.
Abstract:
Methods, systems and designs are provided for removing mercury from crudes. Crude oil is heated to a temperature above 100° C. and held at that temperature for a specified period of time to convert all of the forms of mercury in the oil into the elemental mercury form. The elemental mercury is then stripped from the crude oil by e.g., flashing the hot oil and/or contacting it with a gas phase. This process transfers the elemental mercury from the oil phase into the gas phase. Elemental mercury can then be removed from the gas phase by methods such as condensation, precipitation, or absorption either alone or in combination.
Abstract:
The disclosure relates generally to a parallel computing framework designed to accelerate intensive kernel operations and address the complex physics in numerical reservoir simulations by effectively using the ‘many-core’ computing platform. Specifically, this Many-core Advanced Parallel Simulation (MAPS) uses heuristics to decide the optimal hardware configurations and optimal software components for a given problem's characteristics to efficiently design a model.