Abstract:
This Apparatus to stop damage from Frozen Ground and expanding Ice is to be used to protect property that could be damage from ground and water when it freezes. As ground and water freezes it expands, and when it thaws and refreezes it expands more this causes damage to property. On ground that freezes it expands with great force that can crush rock, this force will lift, crack, brake, crush, and push in walls. Likewise when water freezes it expands and causes great damage, this can be seen around lakes that people have landscaped and in the spring they have to fix it or redo it all over.This invention is used to stop damage from frozen ground and ice by creating a brake line in the frozen ground and ice causing a week spot and redirecting the energy instead of pushing in a straight line this invention will cause the energy upward where the expanding ground or ice would pile up, and stops the expanding energy from damaging property. This invention may be made of any type of materials that would be smooth or slippery on at least one side. It may be held in place with bracing that may change to fit the different materials the main body is made of, such as what is required by the Department of Natural Resource or other state or government department.
Abstract:
Modular structure for protecting an offshore vessel in a body of water from forces of ice features in the body of water is described. The modular protective structure comprising a protective harbor wall constructed and arranged to enclose a harbor space and to counteract the forces of ice features in the body of water. The modular protective structure also comprising a flotation support supporting the protective harbor wall. The flotation support having a capacity to position the modular protective structure at a raised position where the flotation support maintains at least a portion of the protective harbor wall above the water surface such that a harbor is established and the offshore vessel is protected from the forces of ice features in the body of water. Methods which utilize such a modular protective harbor structure are also described.
Abstract:
Ships for navigating in icy waters are provided. Such ships include in the stern area a wedge which extends from bottom of the ship downwards transversely to the ship. The wedge may have a first surface inclined towards the bow and a second surface inclined towards stern with respect to a horizontal plane. These two surfaces can be connected to each other forming a lower edge of wedge. The wedge is at least partially arranged below waterline of the ship. The first inclined surface is dimensioned in such a way that in the case of forward motion, the first surface contacting the flow of water, generates a lift force in order to modify the longitudinal trim of the ship acting as a trim wedge. The second inclined surface also is shaped advantageously in the case of reverse motion in icy waters.
Abstract:
Ships for navigating in icy waters having improved propulsion performance in open water and at the same time good maneuverability forward in icy waters are provided. Such ships include those having a bow area with a bulb adapted to generate a bow wave in phase opposition with respect to that generated by the ship's hull.
Abstract:
A marine seismic surveying apparatus for obstructed waters includes a deployed device and a buoy. The deployed device is disposed at an end of a streamer and is towed below a surface of water. The buoy extends from the end of the streamer to the water's surface. A coupling connects the buoy to the end of the streamer and is breakable due to tension from the buoy obstructed at the surface of the water. A receiver associated with the buoy obtains location information via the buoy at the water's surface. The deployed device can reckon its location with an inertial navigation system in place of location information obtained with the buoy's receiver. Also, the buoy can be deployed at the surface of the water, and more than one buoy can be available for deployment should one be lost.
Abstract:
A portable ice crusher assembly to be mounted on the bow of an icebreaker. The main sections are a deck support assembly, a deck power assembly and a front support assembly with a hanging container with weights within, and sharp pointed spikes at its bottom. The ice crusher assembly breaks up the ice in front of the icebreaker by dropping the container onto it. Instead of breaking the ice with a ship's hull an ice crusher assembly can be used.
Abstract:
The invention relates to a watercraft having improved characteristics for travel in ice, particularly an icebreaker, supply vessel, cargo vessel or corresponding, which watercraft has a hull, which has at the stern portion a propulsion and steering arrangement, which is mainly responsible for movement and steering of the watercraft and which includes at least one skeg, in which is located at least one propeller device. In accordance with the invention, said skegs comprise two units located on different sides of the center line of the hull. Said propeller device is located at the stern end of the skeg. In addition, the skeg has between the propeller device and the hull of the watercraft, in the longitudinal direction on the skeg, one or more thruster devices to provide a water flow mainly transverse in relation to the hull.
Abstract:
A vessel and method for breaking ice drifting in a predominant direction relative to an offshore installation such as a drilling vessel. The vessel is used to deploy an anchor in a position at a distance from the offshore installation and in a direction which, seen from the offshore installation, is substantially in parallel with the direction of movement of the ice. By means of the machinery of the vessel, the direction of the anchor line is adjusted and so is the orientation of the vessel relative to the anchor line to the effect that the propellers can be used to crush and dispose of the ice without using motive energy to hold the vessel against the pressure of the ice.
Abstract:
An ice alert system includes an ice floe monitoring system, and an ice floe forecast system operatively connected to the ice floe monitoring system. The ice floe forecast system is configured to determine a hazardous ice condition. An evacuation system is operatively connected to the ice floe forecast system. The evacuation system is configured and disposed to determine, in response to the hazardous ice condition, a safe harbor location, and a navigational course from an original anchor point to the safe harbor location.
Abstract:
A system and method for clearing an approaching floating ice mass comprising locating a hydrocarbon development platform in a marine environment, and determining a direction from which the ice mass is approaching the hydrocarbon development platform. The method also includes providing an intervention vessel having a water-agitating mechanism associated therewith for propagating artificially generated waves towards a leading edge of the approaching ice mass to fracture the ice mass along the leading edge, thereby causing small ice pieces to separate from the ice mass.