Abstract:
A method for recovering crude oil from a reservoir that is penetrated by at least one injection well, the method comprising: injecting an aqueous displacement fluid comprising a solution of a zinc salt in an aqueous base fluid into the reservoir from the injection well wherein the aqueous base fluid has a total dissolved solids (TDS) concentration in the range of 200 to 250,000 ppmv (parts per million based on the volume of the aqueous base fluid), and a viscosity in the range of 1.00 to 2.00 centipoise (cP) at standard temperature and pressure; and wherein the aqueous displacement fluid has a dissolved zinc concentration in the range of 10 to 3,750 ppmv.
Abstract:
The invention relates to an apparatus for simultaneously injecting fluids into a plurality of samples of porous media, comprising: a plurality of holders for the samples of porous media, each holder comprising a sleeve and first and second platens, the first platen having an inlet for an injection fluid and the second platen having an outlet for a produced fluid, and the samples of porous media being arranged, in use, in each of the holders such that the first platen and second platen of each holder contact a first and second end of the sample of porous medium respectively, the inlet of each first platen being in fluid communication with an injection line for injecting fluid into the sample of porous medium arranged in the holder, the outlet of each second platen being in fluid communication with a dedicated effluent line for removing fluid produced from the sample of porous medium arranged in the holder, on-line and/or off-line analytical means for analyzing the fluids injected into each of the samples of porous media, on-line and/or off-line means for analyzing the fluids removed from each of the samples of porous media. A method of simultaneously injecting injection fluid into the samples of porous media is also provided.
Abstract:
A method for recovering crude oil from a reservoir that is penetrated by at least one injection well, the method comprising: injecting an aqueous displacement fluid comprising a solution of a zinc salt in an aqueous base fluid into the reservoir from the injection well wherein the aqueous base fluid has a total dissolved solids (TDS) concentration in the range of 200 to 250,000 ppmv (parts per million based on the volume of the aqueous base fluid), and a viscosity in the range of 1.00 to 2.00 centipoise (cP) at standard temperature and pressure; and wherein the aqueous displacement fluid has a dissolved zinc concentration in the range of 10 to 3,750 ppmv.
Abstract:
Method and apparatus for mitigating slug formation in a multiphase fluid stream flowing through a conduit. The method includes (a) determining the pressure in the conduit upstream of a slugging zone, (b) determining the pressure in the conduit downstream of the slugging zone, (c) determining the actual pressure difference across the slugging zone by subtracting the downstream pressure from step (b) from the upstream pressure from step (a), (d) determining the error between a target pressure difference and the actual pressure difference, (e) producing a signal having a first component which is proportional to the error and a second component which is proportional to the rate of change of the error over time, and (f) using the signal produced in step (e) to control the position of an adjustable choke valve located downstream of the slugging zone so as to stabilize variations arising in the actual pressure difference over time.
Abstract:
A method of determining rate and phase of fluid produced from or injected into a hydrocarbon well includes obtaining first temperature and pressure measurements from sensors at the well. The first temperature and pressure measurements are applied to a plurality of predictive well models to calculate an estimated value of fluid rate and phase composition from each of the predictive well models responsive to the temperature and pressure measurements. A first fluid rate and phase composition result is derived from the estimate value of fluid rate and phase composition from each of the predictive well models.
Abstract:
An oil field production chemical, especially a scale inhibitor, is in the form of particles thereof carrying a coating e.g. of a dispersing agent. The coating may be polymeric such as an oligomeric polyacid polyester, a polymeric alkoxylated alcohol or a fatty acid polyamine condensate or it may also be a surfactant and may be used in the form of a suspension in an inert oil, such as diesel oil or kerosene which may be injected into a subterranean formation to inhibit the formation of deposits, e.g. scale in oil wells over a longer period than compounds free of the coating.
Abstract:
A method of identifying inflow locations along a wellbore includes obtaining an acoustic signal from a sensor within the wellbore, determining a plurality of frequency domain features from the acoustic signal, and identifying, using a plurality of fluid flow models, a presence of at least one of a gas phase inflow, an aqueous phase inflow, or a hydrocarbon liquid phase inflow at one or more fluid flow locations. The acoustic signal includes acoustic samples across a portion of a depth of the wellbore, and the plurality of frequency domain features are obtained across a plurality of depth intervals within the portion of the depth of the wellbore. Each fluid flow model of the plurality of fluid inflow models uses one or more frequency domain features of the plurality of the frequency domain features, and at least two of the plurality of fluid flow models are different.
Abstract:
In some examples, the disclosure provides a method for determining a drift in clock data that is provided by a clock of a seismic sensor. The sensor is exposed to an ambient temperature that varies over time. The method includes obtaining temperature data associated with the ambient temperature as a function of time. The method also includes obtaining the clock data. The method also includes obtaining timestamp data provided by a global navigation satellite system. The method also includes determining drift data which minimizes a difference of a temporal drift in the clock data, based on the timestamp data and the temperature data. The method also includes outputting corrective data based on the determined drift data.
Abstract:
A method of identifying events includes obtaining an acoustic signal from a sensor, determining one or more frequency domain features from the acoustic signal, providing the one or more frequency domain features as inputs to a plurality of event detection models, and determining the presence of one or more events using the plurality of event detection models. The one or more frequency domain features are obtained across a frequency range of the acoustic signal, and at least two of the plurality of event detection models are different.
Abstract:
A process for use in managing a hydrocarbon production system includes: selecting, from among a plurality of changes proposed to operating parameters of the hydrocarbon production system, the proposed change with the greatest estimated positive change in production; assessing whether the selected change violates an operating constraint; based on said assessment, producing a valid change based on at least the selected change or identifying the selected change as an unusable change, iterating the above steps, the iteration excluding the valid change from the plurality of proposed changes; and implementing at least one valid change, the number of implemented valid changes being less than the number of proposed changes.