Produced water balance tool
    2.
    发明授权

    公开(公告)号:US11920453B2

    公开(公告)日:2024-03-05

    申请号:US17053700

    申请日:2019-05-10

    CPC classification number: E21B43/385 E21B43/16 E21B43/20 G01V3/38

    Abstract: A method of dynamically allocating a total amount of produced water (PW) from a reservoir during enhanced oil recovery (EOR) via a low salinity or softened water EOR flood by receiving measurement data; receiving reservoir configuration information comprising: an EOR injection rate associated with one or more EOR injection zones, a disposal zone injection rate associated with one or more disposal injection zones, and a non-reinjection disposal rate associated with one or more non-reinjection disposal routes; determining a blending rate comprising at least a portion of the PW production rate and at least a portion of the low salinity or softened water injection rate to provide a blended injection fluid; blending at least a portion of the PW with at least a portion of the low salinity or softened water at the blending rate; and dynamically allocating the PW production rate among injection and/or non-reinjection routes.

    UNCREWED OFFSHORE NODE DEPLOYMENT SYSTEMS AND METHODS

    公开(公告)号:US20230026535A1

    公开(公告)日:2023-01-26

    申请号:US17871148

    申请日:2022-07-22

    Abstract: An offshore node deployment system includes a control system, a surface vessel including a deck, and a propulsion system in signal communication with the control system, a node storage container supported by the deck of the surface vessel, wherein the node storage container is configured to store a plurality of nodes which are physically disconnected from each other, and a node deployment system supported by the deck of the surface vessel and controllable by the control system, wherein the node deployment system is configured to retrieve the nodes from the node storage container and deploy the nodes to a subsea location.

    Predictive tool for monitoring RO and NF membranes

    公开(公告)号:US11505473B2

    公开(公告)日:2022-11-22

    申请号:US15734419

    申请日:2019-06-06

    Abstract: A predictive system for monitoring fouling of membranes of a desalination or water softening plant includes ultrafiltration (UF) membranes, reverse osmosis (RO) membranes, and/or nanofiltration (NF) membranes. In addition, the system includes one or more UF skids including a plurality of UF units. Each UF unit contains therein a plurality of UF membranes. Further, the system includes one or more RO/NF skids including one or more RO/NF arrays. Each of the one or more RO/NF arrays includes a plurality of RO units, with each RO unit containing therein a plurality of RO membranes, a plurality of NF units, with each NF unit containing therein a plurality of NF membranes, or a combination thereof. Still further, the system includes UF sensors and/or RO/NF sensors. The system also includes a controller comprising a processor in signal communication with the UF sensors and/or the RO/NF sensors.

    Passive seismic imaging
    8.
    发明授权

    公开(公告)号:US11079507B2

    公开(公告)日:2021-08-03

    申请号:US16671300

    申请日:2019-11-01

    Abstract: A virtual seismic shot record is generated based at least in part on seismic interferometry of the passive seismic data. Then, a frequency bandwidth of the virtual seismic shot record is determined, wherein the frequency bandwidth comprises a plurality of frequencies. The virtual seismic shot record is transformed into a frequency-dependent seismic shot record based on a first frequency of the plurality of frequencies. Further, a phase shift is applied to the frequency-dependent seismic shot record. A first velocity model is generated from the phase shifted frequency-dependent seismic shot record. A second velocity model may be generated using full-waveform inversion (FWI). One or more depth slices are identified from the second velocity model. A seismic image is generated based on the one or more depth slices for use with seismic exploration above a region of subsurface including a hydrocarbon reservoir and containing structural features conducive to a presence, migration, or accumulation of hydrocarbons.

    Seismic sensor
    9.
    发明授权

    公开(公告)号:US11016207B2

    公开(公告)日:2021-05-25

    申请号:US16169042

    申请日:2018-10-24

    Abstract: A seismic survey apparatus includes a body having a longitudinal axis, a first end, a second end opposite the first end, and an inner cavity positioned between the first end and the second end. In addition, the seismic survey apparatus includes a proof mass moveably disposed in the inner cavity of the body. The proof mass is configured to move axially relative to the body. Further, the seismic survey apparatus includes a first sensor disposed in the inner cavity. The first sensor comprises a first piezoelectric element configured to detect the axial movement of the proof mass relative to the body. Still further, the seismic survey apparatus includes electronic circuitry coupled to the first piezoelectric element. The electronic circuitry is configured to receive and process an output of the first piezoelectric element. The proof mass comprises a power supply configured to provide electrical power to the electronic circuitry.

    Method of Controlling Salinity of a Low Salinity Injection Water

    公开(公告)号:US20210130193A1

    公开(公告)日:2021-05-06

    申请号:US16628633

    申请日:2018-07-12

    Abstract: An integrated system includes a desalination plant including a reverse osmosis (RO) array to produce an RO permeate blending stream and a nanofiltration (NF) array to produce an NF permeate blending stream. The integrated system also includes a blending system. Further, the integrated system includes a control unit. Still further, the integrated system includes an injection system for one or more injection wells that penetrate an oil-bearing layer of a reservoir. Moreover, the integrated system includes a production facility to separate fluids produced from one or more production wells that penetrate the oil-bearing layer of the reservoir and to deliver a produced water (PW) stream to the blending system. The blending system is configured to blend the RO permeate and NF permeate blending streams with the PW stream to produce a blended low salinity water stream. The control unit is configured to dynamically alter operation of the blending system to adjust amounts of at least one of the RO permeate blending stream and the NF permeate blending stream to maintain a composition of the blended low salinity water stream within a predetermined operating envelope.

Patent Agency Ranking