Abstract:
There is a method for correcting seismic wave propagation paths through the earth. The method includes determining a first fixed shooting sequence for a first bandlimited seismic source; determining a second shooting sequence for a second bandlimited seismic source, wherein the second shooting sequence includes second shooting positions that correspond to second energy emissions, and the second energy emissions differ from the first energy emissions in at least one of an emission time, phase and amplitude; receiving raw seismic data recorded with seismic receivers and generated as a result of the first and second energy emissions, wherein the raw seismic data is indicative of seismic wave paths from the first and second bandlimited seismic sources to the seismic receivers; separating the raw seismic data into a first bandlimited set corresponding to the first bandlimited seismic source and a second bandlimited set corresponding to the second bandlimited seismic source; and correcting the seismic wave paths, from the first and second bandlimited seismic sources to the seismic receivers, based on at least one of the first and second bandlimited sets.
Abstract:
Positioning along a towed streamer is enhanced by using acoustic signals emitted from a surface vehicle that is not physically linked to the survey equipment. The surface vehicle navigates to remain above a target location between the streamer's head and its tail in the towing direction. The positions of acoustic units placed underwater along the streamer or on an adjacent streamer are determined using the acoustic signals emitted by the surface vehicle.
Abstract:
Computing device, computer instructions and method for processing energy at a free-surface reflection relating to an air-water interface. The method includes receiving input seismic data recorded with seismic sensors; receiving wave-height data that describes an actual shape of a top surface of a body of water; processing up-going energy at a receiver and down-going energy following a reflection at the sea-surface, using the input seismic data and a linear operator modified to take into account the wave-height data; and generating an image of the subsurface based on the up-going energy or the down-going energy or a combination of the input seismic data and one of the up-going or down-going energy.
Abstract:
Simultaneous inversion of multi-vintage seismic data obtains seismic data for vintages and generates an initial earth model for each vintage. A cost function includes a data norm term having for at least one pair of vintages of seismic data a difference norm between a difference in obtained seismic data for the at least one pair of vintages and a difference in modeled seismic data for the at least one pair of vintages. The cost function also includes a model norm term for each pair of vintages selected from at least three vintages of seismic data. Each model norm term includes a difference norm between earth models for a given pair of vintages. A closure relationship is imposed on all earth models. The earth models are adjusted for the vintages to drive the cost function to a minimum and to produce updated earth models.
Abstract:
Systems and methods for performing seismic migration using an indexed matrix are disclosed. The method includes receiving a seismic trace from a receiver, determining a discretized position of the receiver, and determining a discretized position of a seismic source. The method also includes determining a set of migration indexes based on a matrix, the discretized position of the receiver, and the discretized position of the seismic source, and determining a set of amplitude weights based on the matrix, the discretized position of the receiver, and the discretized position of the seismic source. The method further includes migrating the seismic trace based on the set of migration indexes and the set of amplitude weights.
Abstract:
During seismic data acquisition the seismic sources and/or seismic receivers are deployed according to an irregular arrangement departing in a predetermined manner from repetitive spatial patterns formed by or within groups of adjacent among the seismic sources or adjacent among the receivers. Additionally or alternatively, source activation moments of the sources within a series of source firing time intervals are determined using Golomb ruler sequences or a non-linear inversion.
Abstract:
A method for spectral analysis of seismic data obtains imaged seismic data and generates orthogonally shifted imaged seismic data gathers. The orthogonally shifted imaged seismic data gathers are processed to generate a spectrally processed imaged seismic data. Alternatively, the imaged seismic data are obtained using a spectral processing filter that is a function of a magnitude of a total wavenumber of the imaged seismic data in three dimensions and a spatially variable velocity function.
Abstract:
A method for delineating geological features of a surveyed subsurface with a vision-language model, VLM, the method including receiving verbal and/or written descriptions of the geological features, from a user, converting the verbal and/or written descriptions into interpretable input data using a large language model, LLM, configuring a pretrained VLM, based on the interpretable input data and geological images of another subsurface, to obtain a tailored VLM, and delineating with the tailored VLM, the geological features in an image of the subsurface, which is generated based on input seismic data d acquired over the subsurface.
Abstract:
A least-square migration, LSM, based method for generating a 4D image of a subsurface, the method including receiving seismic data d related to the subsurface, the seismic data d including a baseline dataset dB and a monitor dataset dM, calculating a baseline filter B and a monitor filter M based on a same common reflectivity r of the subsurface and corresponding remigrated baseline data mB1 and remigrated monitor data mM1 so that the base filter B applied to the remigrated baseline data mB1 equals the monitor filter M applied to the remigrated monitor data mM1, applying the baseline filter B to raw migrated baseline data mB0 and applying the monitor filter M to raw migrated monitor data mM0 to generate LSM baseline data mB and LSM monitor data mM, and generating the 4D image of the subsurface based on the LSM baseline data mB and the LSM monitor data mM.
Abstract:
An umbilical-based marine acquisition system includes an umbilical cable configured to be attached with a proximal end to a vessel and to provide compressed air to a seismic source, a sensor loaded section having plural seismic sensors distributed along a length of the sensor loaded section, the sensor loaded section being configured to be attached with a distal end to another sensor loaded section or to the seismic source, and an umbilical-sensor section connection configured to connect a distal end of the umbilical cable to a proximal end of the sensor loaded section. The umbilical-sensor section connection and the sensor loaded section are configured to transmit seismic data acquired by the plural seismic sensors to the vessel.