Abstract:
An integrated cryogenic fluid delivery system includes a cryogenic liquid tank having an interior, a wall and a geometry. The interior of the cryogenic liquid tank contains a supply of cryogenic liquid. A fuel pickup line is positioned within the interior of the tank and is in fluid communication with a vaporizer so that the vaporizer receives and vaporizes cryogenic liquid from the tank. The vaporizer is positioned outside of the tank and is secured to the wall. The vaporizer also has a shape that conforms with the geometry of the tank.
Abstract:
A system for dispensing a cryogenic fluid includes a bulk tank containing a supply of cryogenic fluid. A heating circuit includes an intermediate tank and a heating device and has an inlet in fluid communication with the bulk tank and an outlet. A bypass junction is positioned between the bulk tank and the inlet of the heating circuit. A bypass circuit has an inlet in fluid communication with the bypass junction and an outlet so that a portion of cryogenic fluid from the bulk tank flows through the heating circuit and is warmed and a portion flows through the bypass circuit. A mixing junction is in fluid communication with the outlets of the bypass circuit and the heating circuit so that warmed cryogenic fluid from the heating circuit is mixed with cryogenic fluid from the bypass circuit so that the cryogenic fluid is conditioned. A dispensing line is in fluid communication with the mixing junction so that the conditioned cryogenic fluid may be dispensed. Warmed cryogenic fluid remaining in the heating circuit after dispensing is directed to the intermediate tank and used to warm cryogenic fluid directed through the heating circuit.
Abstract:
A frangible closure coupling is used with or on pipe of a tank that contains a potentially dangerous fluid, such as liquid natural gas. The closure coupling mitigates the uncontrolled release of fluid from the tank in the event of a rupture of a pipe attached to the tank.
Abstract:
An integrated cryogenic fluid delivery system includes a cryogenic liquid tank having an interior, a wall and a geometry. The interior of the cryogenic liquid tank contains a supply of cryogenic liquid. A fuel pickup line is positioned within the interior of the tank and is in fluid communication with a vaporizer so that the vaporizer receives and vaporizes cryogenic liquid from the tank. The vaporizer is positioned outside of the tank and is secured to the wall. The vaporizer also has a shape that conforms with the geometry of the tank.
Abstract:
A system for dispensing a cryogenic fluid includes a bulk tank containing a supply of cryogenic fluid. A heating circuit includes an intermediate tank and a heating device and has an inlet in fluid communication with the bulk tank and an outlet. A bypass junction is positioned between the bulk tank and the inlet of the heating circuit. A bypass circuit has an inlet in fluid communication with the bypass junction and an outlet so that a portion of cryogenic fluid from the bulk tank flows through the heating circuit and is warmed and a portion flows through the bypass circuit. A mixing junction is in fluid communication with the outlets of the bypass circuit and the heating circuit so that warmed cryogenic fluid from the heating circuit is mixed with cryogenic fluid from the bypass circuit so that the cryogenic fluid is conditioned. A dispensing line is in fluid communication with the mixing junction so that the conditioned cryogenic fluid may be dispensed. Warmed cryogenic fluid remaining in the heating circuit after dispensing is directed to the intermediate tank and used to warm cryogenic fluid directed through the heating circuit.
Abstract:
A system for dispensing a cryogenic liquid includes a storage tank containing a supply of the cryogenic liquid and a metering chamber. A liquid inlet line is in communication with the storage tank and the metering chamber so that the metering chamber receives cryogenic liquid from the storage tank. A meter run is in communication with the metering chamber and includes a metering element, a dispensing line and a dispensing valve. A stabilizing column is positioned within the metering chamber and includes vertically spaced openings. Vertically spaced first and second pressure sensors are in communication with the interior of the stabilizing column. A controller is in communication with the metering element, the first and second pressure sensors and the dispensing valve.
Abstract:
A cryogenic fluid delivery system includes a tank adapted to contain a supply of cryogenic liquid, with the tank including a head space adapted to contain a vapor above the cryogenic liquid stored in the tank. A liquid withdrawal line is adapted to communicate with cryogenic liquid stored in the tank. A vaporizer has an inlet that is in communication with the liquid withdrawal line and an outlet that is in communication with a vapor delivery line. A pressure building circuit is in communication with the vapor delivery line and the head space of the tank. The pressure building circuit includes a flow inducing device and a control system for activating the flow inducing device when a pressure within the head space of the tank drops below a predetermined minimum pressure and/or when other conditions exist.
Abstract:
A cryogenic fluid dispensing system having a tank that holds cryogenic liquid and manages heat within the system is disclosed. The cryogenic liquid dispensing system optionally includes a basin and/or a heat exchanger within the tank for managing heat within the system.
Abstract:
A tank system and method for storing cryogenic liquids includes a support cooling channel to reduce heat leak into the vessel of a fuel tank. The fuel tank may store either liquid natural gas or liquid hydrogen or another cryogenic liquid. A cooling fluid is transferred from a second vessel into the support cooling channel of the fuel tank.
Abstract:
A system for dispensing cryogenic liquid includes a container defining an interior with a partition dividing the interior into primary and reserve chambers. Cryogenic liquid within the primary chamber is separated from cryogenic liquid in the reserve chamber. The partition provides a headspace cornrnurrrcation passage. A primary pressure building circuit has an inlet selectively in liquid communication with the primary chamber and an outlet in fluid communication with the headspaces of the primary and reserve chambers. A reserve pressure building circuit has an inlet selectively in liquid communication with the reserve chamber and an outlet in fluid communication with the headspaces of the primary and reserve chambers. An equalizing circuit is selectively in liquid communication with the primary and reserve chambers. A dispensing line is selectively in liquid communication with the primary chamber.