Abstract:
A system achieves seamless localization for a plurality of robots when first some robots moves to a shadow area where GPS signals are not received while remaining second robots receives the GPS signals, by performing an absolute localization for the second robots using the GPS signals; and performing an absolute localization for the second robots using the GPS signals; performing a relative localization for the first robots based on the second robots, thereby determining an absolute location of the first robots. Further, when the second robots move to the shadow area where the first robots have been moved, the system performs the seamless localization by determining a relative location of the second robots based on the first robots on which the relative localization has been performed, thereby determining an absolute location of the second robots based on the relative location of the second robots.
Abstract:
Provided is a semiconductor device. The semiconductor device includes a first insulation layer on a semiconductor substrate, the first insulation layer including a lower metal line, a metal head pattern on the first insulation layer, the metal head pattern including an inclined side surface, a thin film resistor pattern on the metal head pattern, a second insulation layer on the metal head pattern and the thin film resistor pattern, an upper metal line on the second insulation layer, a first via connecting the lower metal line to the upper metal line, and a second via connecting the metal head pattern to the upper metal line.
Abstract:
Provided is a semiconductor device. The semiconductor device includes a first insulation layer on a semiconductor substrate, the first insulation layer including a lower metal line, a metal head pattern on the first insulation layer, the metal head pattern including an inclined side surface, a thin film resistor pattern on the metal head pattern, a second insulation layer on the metal head pattern and the thin film resistor pattern, an upper metal line on the second insulation layer, a first via connecting the lower metal line to the upper metal line, and a second via connecting the metal head pattern to the upper metal line.
Abstract:
An integrated gateway apparatus includes a policy storage for storing therein a first information on message filtering and switching policies for messages received from heterogeneous devices in lower networks via network interfaces; a device management unit for extracting a second information on the messages, the devices and the network interfaces; a layer-basis filter unit for performing, based on the first and the second information, the message filtering and switching on the messages on a layer basis; and an integrated switch management unit for providing the first information to the layer-basis filter unit and controlling the layer-basis filtering unit. The layer-basis filter unit includes a switch filter unit, a route filter unit and a gateway filter unit for performing the message filtering and switching in a MAC layer, in a network layer and a transport layer and in an application layer, respectively.
Abstract:
A system for fault prediction in a home network includes: a context generator for generating context information based on status data collected in real time about components of the home network; a specification interpreter for generating knowledge rules for fault detection by using specifications of the components of the home network; a context analyzer for analyzing if the context information meet the knowledge rules to classify the context information into normal situation contexts and abnormal situation contexts; a context pattern learner for generating new knowledge rules based on the abnormal situation contexts and fault rules corresponding to the abnormal situation contexts; a knowledge rule database for storing and managing the knowledge rules and the new knowledge rules; and a fault predictor for analyzing a correlation between the knowledge rules or the new knowledge rules and the generated context information, thereby predicting faults to be generated.
Abstract:
Provided are a fault model and rule based fault management apparatus and method for a home network. The fault management apparatus includes: a plurality of fault generation unit formed in a multilevel structure and generating fault notification when a fault is generated; a plurality of fault communication unit for transferring fault notification from one of the fault generation unit; a fault agent unit for transferring each fault notification from a plurality of the fault communication unit; and a fault diagnosis and process unit for receiving the fault notification from the fault agent unit, diagnosing a corresponding fault, and processing the corresponding fault using a fault model, a fault decision rule, and a fault process rule.
Abstract:
Provided is a home-network UMB system and a method thereof for providing interoperability between devices connected one another through different types of middlewares in a home network. The home-network UMB system includes: a bridge core for establishing/releasing a connection between bridge adaptors of different types of middlewares and analyzing/transferring a universal middleware message in order to interoperate devices connected through different types of middlewares existed on a home network; and a plurality of bridge adaptor for connecting the bridge core to a corresponding middleware, and finding/releasing different types of devices, controlling/monitoring different types of devices and registering/creating an event for different types of devices through transforming a universal middleware bridge message to a local message of each middleware and vice versa.