Abstract:
A method of controlling a viewpoint of a user or a virtual object on a two-dimensional (2D) interactive display is provided. The method may convert a user input to at least 6 degrees of freedom (DOF) structured data according to a number of touch points, a movement direction thereof, and a rotation direction thereof. Any one of the virtual object and the viewpoint of the user may be determined as a manipulation target based on a location of the touch point.
Abstract:
A semiconductor device includes a main driving unit configured to serialize first and second data applied in parallel and output the serialized data to a data output pad, and an auxiliary driving unit configured to drive the data output pad in a period when the first and second data have different logic levels.
Abstract:
Data transmission apparatus and method thereof, and data reception apparatus and method thereof. Input data is encoded into a plurality of visual codes according to a visual code type. The visual code type includes a sequential type requiring sequential transmission and a nonsequential type not requiring sequential transmission. The sequential visual code includes start code, data code, and end code, and is displayed sequentially. The nonsequential visual code is displayed nonsequentially.
Abstract:
A semiconductor apparatus includes an odd data clock buffer group configured to maintain or shift a phase of a multi-phase source clock signal, and output a first multi-phase clock signal, an even data clock buffer group configured to maintain or shift a phase of the multi-phase source clock signal, and output a second multi-phase clock signal, an odd data output buffer group configured to drive odd data in response to the first multi-phase clock signal and output the driven data to an odd data pad group, and an even data output buffer group configured to drive even data in response to the second multi-phase clock signal and output the driven data to an even data pad group, wherein the phases of clock signals of the first and second multi-phase clock signal are different from each other.
Abstract:
A sensing module, and a Graphical User Interface (GUI) control apparatus and method are provided. The sensing module may be inserted into an input device, for example a keyboard, a mouse, a remote controller, and the like, and may sense a hovering movement of a hand of a user within a sensing area, and thus it is possible to provide an interface to control a wider variety of GUIs, and possible to prevent a display from being covered.
Abstract:
A display apparatus that may enable sensing a multi-touch and a proximity object is provided. The display apparatus may display an image generated by the object on an organic light emitting diode (OLED) display panel, and may sense an invisible light that may be reflected by the object and may have entered through a hole.
Abstract:
A method of navigating through audio files and an apparatus for playing back audio files using the method are provided. The apparatus for playing back audio files includes an input module which receives from a user a command to switch the apparatus to a navigation mode, a storage module which stores a plurality of audio files, each audio file comprising a highlight section, a control module which extracts the audio files from the storage module in response to the command received by the input module and plays back the highlight sections of the audio files while adjusting a volume level for each of the audio files, and an output module which outputs to the user the highlight sections of the audio files played back by the control module.
Abstract:
Circuit and method for recovering clock data in highly integrated semiconductor memory apparatus includes a plurality of signal receiving units configured to receive signals through a plurality of input/output pads and transfer the signals according to a receiving reference clock, the signal receiving units being divided into groups, a plurality of phase detection units configured to detect phases of signals output from the groups of the signal receiving units, a plurality of phase detection control units configured to control the phase detection units so that the phase detection units sequentially detect the phases of the signals output from each of the groups of the signal receiving units and a notification unit configured to output signals output from the phase detection units.
Abstract:
Circuit and method for recovering clock data in highly integrated semiconductor memory apparatus includes a plurality of signal receiving units configured to receive signals through a plurality of input/output pads and transfer the signals according to a receiving reference clock, the signal receiving units being divided into groups, a plurality of phase detection units configured to detect phases of signals output from the groups of the signal receiving units, a plurality of phase detection control units configured to control the phase detection units so that the phase detection units sequentially detect the phases of the signals output from each of the groups of the signal receiving units and a notification unit configured to output signals output from the phase detection units.
Abstract:
A parallel to serial conversion circuit makes output data normally swing even in a high-speed operation. The parallel to serial conversion circuit includes a main selection block configured to drive an output node sequentially in response to data on a first line and data on a second line, and a subsequent selection block configured to drive the output node sequentially in response to data on a subsequent first line and data on a subsequent second line, wherein the output node is driven by inverted data of the data on the subsequent first line and inverted data of the data on the subsequent second line.