Abstract:
The invention relates to a method of screening a heminthic parasite preparation that affects a regulatory T cell function and a method of treating a disease by altering a regulatory T cell activity through the administration of a parasite preparation.
Abstract:
An apparatus and method for advancing and/or slowing signatures in a printing press. The apparatus and method includes a series of two or more belt drives, where each belt drive includes at least a pair of opposed belts. The belts are preferably timing or toothed belts driven by sprockets. The sprockets are formed with a semi-elliptical outer surface. As a result, the belts have two directions of motion. The first direction—horizontal—advances the signatures and may be used to slow the signatures. The second direction—vertical—withdraws the belts away from contact with the signatures to prevent buckling or wrinkling during a speed transition or during a transfer between belts. In one embodiment of the present invention, both opposed belts are retracting belts; in another embodiment, one belt is a fixed conveyor belt, while the other opposed belt is a retracting belt. The apparatus can be formed of a series of sequential belts running at different speeds, or a slower set of belts could be located inside the faster set of belts. In another embodiment, the upper and lower belts can be offset relative to one another to create an S-wrap along the signature, thereby compensating for different thicknesses of the folded signature.
Abstract:
An apparatus and method for advancing and/or slowing signatures in a printing press. The apparatus and method includes a series of two or more belt drives, where each belt drive includes at least a pair of opposed belts. The belts are preferably timing or toothed belts driven by sprockets. The sprockets are formed with a semi-elliptical outer surface. As a result, the belts have two directions of motion. The first direction—horizontal—advances the signatures and may be used to slow the signatures. The second direction—vertical—withdraws the belts away from contact with the signatures to prevent buckling or wrinkling during a speed transition or during a transfer between belts. In one embodiment of the present invention, both opposed belts are retracting belts; in another embodiment, one belt is a fixed conveyor belt, while the other opposed belt is a retracting belt. The apparatus can be formed of a series of sequential belts running at different speeds, or a slower set of belts could be located inside the faster set of belts. In another embodiment, the upper and lower belts can be offset relative to one another to create an S-wrap along the signature, thereby compensating for different thicknesses of the folded signature.
Abstract:
A display and image-capture device comprises a plurality of image sensors and a plurality of light-emitting elements disposed on a substrate. A plurality of lenses is disposed on a light-incident side of the image sensors, and the lenses are configured to direct light toward the image sensors. The image sensors may be configured to detect directional information of incident light, enabling the device to function as a plenoptic camera. In some examples, the image sensors and lenses are integrated into a plurality of microcameras.
Abstract:
A display and image-capture device comprises a plurality of image sensors and a plurality of light-emitting elements disposed on a substrate. A plurality of lenses is disposed on a light-incident side of the image sensors, and the lenses are configured to direct light toward the image sensors. The image sensors may be configured to detect directional information of incident light, enabling the device to function as a plenoptic camera. In some examples, the image sensors and lenses are integrated into a plurality of microcameras.
Abstract:
A fin box that accepts fins from multiple different fin box systems. The fin box can include a fin box body and a detachable insert. The detachable insert can be inserted within and secured to the fin box body in multiple positions where each position enables one or more different types of fins to be used with the fin box.
Abstract:
An apparatus for transporting signatures is provided which includes a moving transport surface for transporting signatures; a pair of eccentric guide rollers, rotatable about respective axes, the pair of guide rollers positioned opposite one another to receive signatures therebetween from the moving transport surface; and a diverter positioned downstream of the guide rollers. The diverter is movable between a first position to divert signatures received from the guide rollers to a first downstream moving transport surface and a second position to divert signatures received from the guide rollers to a second downstream moving transport surface.
Abstract:
A touch-screen device includes a radiation source, a waveguide configured to receive radiation emitted by the source and to cause some of the radiation to undergo total internal reflection within the waveguide, a pliable frustrating layer disposed relative to the waveguide to enable the frustrating layer to contact the waveguide when the frustrating layer is physically deformed, the frustrating layer being configured to cause frustration of the total internal reflection of the received radiation within the waveguide when the frustrating layer is physically deformed to contact the waveguide such that some of the received escapes from the waveguide at the contact point, an imaging sensor configured to detect some of the radiation that escapes from the waveguide, and a structure disposed relative to the frustrating layer, the structure configured to steer at least a portion of the radiation that escapes from the waveguide toward the imaging sensor.
Abstract:
A touch-screen device includes a radiation source, a pliable waveguide configured to receive radiation emitted by the radiation source and to cause some of the received radiation to undergo total internal reflection within the pliable waveguide, a frustrating layer disposed relative to the pliable waveguide so as to enable the frustrating layer to contact the pliable waveguide when the pliable waveguide is physically deformed, the frustrating layer being configured to cause frustration of the total internal reflection of the received radiation within the pliable waveguide at a contact point between the frustrating layer and the pliable waveguide when the pliable waveguide is physically deformed to contact the frustrating layer such that some of the received radiation undergoing total internal reflection within the pliable waveguide escapes from the pliable waveguide at the contact point, and an imaging sensor configured to detect some of the radiation that escapes from the optical waveguide.