Abstract:
Method, device and computer program product for stabilizing a video signal. A plurality of frames of the video signal are captured using a camera. A motion sensor associated with the camera is used to generate a plurality of samples representing motion of the camera. The samples are used to determine a displacement of the camera between a first time and a second time, wherein the first time corresponds to an exposure time midpoint of a first frame of the video signal and the second time corresponds to an exposure time midpoint of a second frame of the video signal. The determined displacement is used to compensate for motion in the video signal between the first and second frames caused by the motion of the camera, to thereby stabilize the video signal.
Abstract:
In an embodiment, a system includes a receiver for receiving a video signal over a lossy medium and a decoder coupled to the receiver and arranged to decode the video signal for output to a display. The decoder includes a concealment module for regenerating a portion of image data lost from the video signal over said medium, by interpolating or extrapolating from other image data of the video signal received over the medium. The decoder comprises a controller configured to select, based on a measure of loss effect estimated for the portion of image data, whether (i) to apply the concealment module to regenerate the portion of image data, or alternatively (ii) to freeze preceding image data of the video signal in place of the portion of image data.
Abstract:
A method of delivering an encoded data stream to a plurality of recipient end-user nodes of a network includes receiving an incoming encoded data stream at a first recipient node from a transmitting node over the network. During ongoing receipt of the incoming encoded data stream at the first recipient node from the transmitting node, the incoming encoded data stream is decoded at the first recipient node to produce a decoded data stream that is output for consumption at the first recipient node. The decoded data stream is used to generate a modified encoded data stream being a modified version of the incoming encoded data stream. Still during ongoing receipt of the incoming encoded data stream at the first recipient node from the transmitting node, the modified encoded data stream is relayed from the first recipient node to one or more second recipient nodes over the network.
Abstract:
The present invention is directed to a method and system for continuously displaying image pages of digital content which are available over a network. More specifically, the method and system enables a user to view image pages in a continuous manner while a limited number of image pages are being downloaded at a given time. Several image pages which are adjacent to the image page(s) the user is currently viewing may be stored in temporary memory. The image pages in the temporary memory are utilized so that, within the image pages, the user can move the displayed image pages up and down without experiencing any discontinuation. In order to ensure continuous display throughout the entire digital content, the next possible set of image pages is constantly determined and obtained to update the current set of image pages in the temporary memory.
Abstract:
Apparatus and methods relating to store operations are disclosed. In one embodiment, a first storage unit is to store data. A second storage unit is to store the data only after it has become detectable by a bus agent. Moreover, the second storage unit may store an index field for each data value to be stored within the second storage unit. Other embodiments are also disclosed.
Abstract:
A central aspect of the invention relates to a method of enhancing speech, the method comprising the steps of, receiving noisy speech comprising a clean speech component and a non-stationary noise component, providing a speech model, providing a noise model having at least one shape and a gain, dynamically modifying the noise model based on the speech model and the received noisy speech, enhancing the noisy speech at least based on the modified noise model. Hereby is achieved a method of speech enhancement that is able to suppress highly non-stationary noise. Another aspect of the invention relates to a speech enhancement system that may be adapted to be used in a hearing system, such as a hearing aid or a headset.
Abstract:
A multiprocessor-scalable streaming data server arrangement in a multiprocessor data server having N processors, N being an integer greater than or equal to 2, includes implementing N NICs (Network Interface Cards), a first one of the N NICs being dedicated to receiving an incoming data stream. An interrupt from the first one of the N NICs is bound to a first one of the N processors and an interrupt for an nth NIC is bound to an nth processor, 0
Abstract:
A safety restraint system (10) for a vehicle (12) includes a seat belt buckle (60) and a retractor (53) mounted approximately at or below a pelvic level of a vehicle occupant (98). A seat belt (52) extends over a side pelvic portion (97) of vehicle occupant (98) and directly prevents outward lateral displacement of the side pelvic portion (97) during a side collision event.
Abstract:
A side airbag (14) for a supplemental restraint system (12) of a vehicle (10) includes an inflatable bag comprised of a shoulder-receiving portion (24) and a thorax-receiving portion (26) that extends from the shoulder-receiving portion (24). This airbag (14) is moveable between a deflated configuration and an inflated configuration. In the inflated configuration, the thorax-receiving portion (26) is sized thinner than the shoulder-receiving portion (24) in a lateral direction.
Abstract:
A side airbag apparatus for a vehicle is provided. The airbag apparatus includes an airbag that has a generally wedge shaped rear aspect when deployed. The generally wedge shaped rear aspect narrows from an upper region to a lower region. This configuration inhibits loading on the thorax of an occupant of the vehicle seated adjacent the deployed airbag. The airbag apparatus also includes an inflator, which cooperates with the airbag to supply gas thereto. Because the airbag is specifically configured to inhibit loading on an occupant's thorax, the inflator can be configured to inflate the airbag with a pressure greater than typical side airbags.