Abstract:
The invention relates to an axial bearing (10) comprising at least one or more segments (18) on each of the front side (22) and the rear side (26) thereof, wherein the segments (18) on the opposite sides (22, 26) each are disposed at least partially offset from each other.
Abstract:
A method for producing a lubricant feed in an axial bearing, wherein the lubricant feed is designed as a channel guiding lubricant from a lubricant pocket of the axial bearing, includes the following steps: preparing an initial axial bearing mold, stamping a groove in the area of the initial mold in which the channel is planned; embossing and putting through material on at least one or both sides of the groove along at least one segment of the groove; stamping the material on the side of the groove toward the groove so that the material and the groove form the channel.
Abstract:
The invention relates to a turbocharger (15) comprising a bearing housing (7) which mounts a rotor shaft (12) and has a bearing-housing oil space (13); comprising a compressor housing which is connected to the bearing housing (7) and has a compressor space (14); and comprising a sealing device (20) which is provided for sealing the bearing-housing oil space (13) relative to the compressor space (14) and which has a sealing ring (1) which is arranged in a fixed position in the bearing housing (7) and has two end faces (17, 17′) which interact with associated end faces (10) and (11) of a disc (9) and a sealing bush (16) which are fastened to the rotor shaft (12), wherein the sealing ring (1) is arranged with axial play on the rotor shaft (12) between the disc (9) and the sealing bush (16); and air-delivery devices (2, 3) oriented in opposition are arranged in the end faces (17, 17′) of the sealing ring (1).
Abstract:
A turbocharger with a variable turbine geometry device has one or two blade bearing rings. At least one or more fastening elements are provided for fastening the one or two blade bearing rings. The respective fastening element has at least one section formed with a knurl and/or at least one section formed with at least one or several notches.
Abstract:
A turbocharger, which is particularly suitable for a motor vehicle, includes: a rotor shaft with a turbine impeller and a compressor impeller disposed thereon. The rotor shaft has a roller bearing assembly for mounting in the housing of the turbocharger.
Abstract:
A turbocharger with a variable turbine geometry, includes at least one rolling body element respectively disposed on an associated fixing element for the variable turbine geometry. A device for adjusting the variable turbine geometry can roll off on the respective rolling body element.
Abstract:
An axial bearing for a turbocharger contains a through hole for a shaft and at least one at least partially or completely circulating segment section on a first and second side of the axial bearing. At least one bearing surface is disposed in the segment section. At least one oil pocket is on the first side of the axial bearing. The oil pocket is connected to at least one recess opening outwards, the recess being configured such that it connects the oil pocket for oil supply purposes to the respective segment section and the bearing surface(s) thereof on the first and second side of the axial bearing.
Abstract:
A turbocharger for a motor vehicle has a compressor housing, a turbine housing, a bearing housing, and at least one flange on the compressor side. The turbine housing is force-locked with the bearing housing by way of a fastening element that is arranged on the flange on the compressor side, thereby allowing the complete automatic assembly of the turbocharger.
Abstract:
A turbocharger of variable turbine geometry, comprising: a vane bearing ring assembly including a vane bearing ring and a disk which can be fixed to the vane bearing ring for creating a flow channel; and at least one support pin which is connected with a first end to the vane bearing ring and which is welded with a second end to the disk which comprises recesses for the support pin end to be welded, the recesses being surrounded by a heat throttle.
Abstract:
A turbocharger of variable turbine geometry, comprising: a vane bearing ring assembly including a vane bearing ring and a disk which can be fixed to the vane bearing ring for creating a flow channel; and at least one support pin which is connected with a first end to the vane bearing ring and which is welded with a second end to the disk which comprises recesses for the support pin end to be welded, said recesses being surrounded by a heat throttle.