Abstract:
In an image display apparatus having scanning lines and data lines mutually intersecting through an insulating layer and a cathode substrate formed with electron-emission areas, whereby electrons accelerated from the electron-emission areas impinge on fluorescent materials provided on an anode substrate to make them luminesce, an intermediate layer is provided at a portion where a scanning line overlaps a data line and the surface of the intermediate layer opposing a spacer is less uneven and flattened. The intermediate layer is, for example, an interlayer insulating film formed on the data line or a thick-film electrode layer formed between the scanning line and the spacer. Alternatively, the cathode substrate is formed with recesses in which the data lines are fitted so as to flatten an intersectional portion of the scanning line and the data line.
Abstract:
In an FED (Field Emission Display), lowering of a color temperature is suppressed which is caused by that light emission luminance of respective color phosphors is different from each other so as to achieve a better white balance. A display apparatus is equipped with a cathode substrate containing a plurality of electron emitter elements, and an anode substrate. The anode substrate is arranged opposite to the cathode substrate, and contains three colors of red, green, blue phosphors which are excited by electrons emitted from the electron emitter elements so as to emit light. Then, an area of either the red phosphor or an area of the blue phosphor is made smaller than an area of the green phosphor.
Abstract:
The present invention provides a self-luminous planar display device which exhibits high quality and high reliability by suppressing discharge attributed to charging of charge in a gap formed at a bent portion of a lead terminal. One of or both data line lead terminals and scanning line lead terminals are formed in parallel at least to the inner side of a sealing frame, and a gap which is formed by bent portions of the lead terminals is arranged at a position where the gap does not project to the inside from the sealing region (adhering region) of a back panel and a sealing frame.
Abstract:
A color cathode ray tube includes third, fourth and fifth electrodes and an anode in its electron beam focusing section. A first-type electrostatic quadrupole lens is formed between first and second members of the fifth electrode for focusing electron beams in one of horizontally and vertically and diffusing the electron beams in the other of horizontally and vertically increasingly with decreasing beam deflection, and a second-type electrostatic quadrupole lens is formed between first and second members of the third electrode for focusing the electron beams in the other of horizontally and vertically and diffusing the electron beams in the one of horizontally and vertically increasingly with the decreasing beam deflection, and an electron lens is formed between the fourth electrode and a first aperture formed in a first surface of the second member of the third electrode adjacent to the fourth electrode, the first surface being on a side of the second member of the third electrode opposite from the fourth electrode, for diffusing the electron beams horizontally and focusing the electron beams vertically increasingly with the decreasing beam deflection.
Abstract:
A color cathode ray tube includes a three-beam in-line type electron gun. The main lens section includes a focus electrode and an anode facing the focus electrode, each of the focus electrode and the anode has an electrode having a single opening common for three electron beams in an end thereof facing each other and a plate electrode disposed therein and having beam apertures. The focus electrode and the anode satisfy a following inequality:(A+566)/106>H-2.times.Swhere A is V1.times.V2.times.T, V1 is a vertical diameter of the single opening, V2 is a vertical diameter of a center one of the beam apertures and T is an axial distance between the single opening and the plate electrode, H is a horizontal diameter of the single opening, S is P.times.L/Q, P is a horizontal center-to-center spacing between adjacent phosphor elements at a center of the three-color phosphor screen, Q is an axial spacing between the three-color phosphor screen and the shadow mask at the center of the three-color phosphor screen, and L is an axial distance between the shadow mask and the single opening in the focus electrode.
Abstract:
A color cathode ray tube includes an evacuated envelope formed of a panel portion having a phosphor screen, a neck portion and a funnel portion connecting the panel portion and the neck portion, and an in-line electron gun housed in the neck portion. The in-line electron gun includes a main lens and an electrostatic quadrupole lens. The focus electrode of the electron gun has a single opening at one end thereof for passing the three electron beams and opposes an anode to form a main lens therebetween. The single opening has a diameter larger in a horizontal direction than a diameter thereof in a vertical direction. A distance from the main lens to the phosphor screen is not larger than 300 mm, an outer diameter T of the neck portion housing the in-line electron gun satisfies the following inequality: 23.2 mm.ltoreq.T.ltoreq.25.9 mm, and a value D of twice a distance from a center of a trajectory of a side electron beam of the three electron beams to a horizontal edge of the single opening satisfies the following inequality: 5.0 mm.ltoreq.D.ltoreq.6.5 mm.