Abstract:
Provided is an Optical Line Terminal (OLT). The OLT may include a first Wavelength division multiplexer/demultiplexer (WDM MUX/DeMUX) to perform a wavelength demultiplexing on seed light received from a seed light source, and a second Wavelength division demultiplexer (WDM DeMUX) to receive, from at least one ONU/ONT, an upstream optical signal generated using the seed light having the wavelength demultiplexing performed, and to perform a wavelength multiplexing on the received upstream optical signal.
Abstract:
A remotely optically amplified passive optical network (PON) system, an optical line terminal, and a remote node, and an optical amplification and gain-clamping methods of the PON system are provided. The PON system generates pump light and transmits the generated pump light to an optical transmission line, amplifies primarily an optical signal by the pump light which pumps the optical transmission line, and amplifies secondarily the optical signal by the transmitted pump light which pumps a gain medium of a remote node while maintaining a gain of the optical signal by applying a gain-clamping method to the remote node.
Abstract:
A wavelength-division multiplexing optical communication system and a method for measuring optical performance of an output signal for the system. The optical communication system includes: a service-provider device; a local node; and a plurality of subscriber devices. The service-provider device includes: a plurality of first optical transceivers; a first optical multiplexer/demultiplexer (OD/OM) connected to the plurality of first optical transceivers; and a seed-light source providing seed light. Each subscriber device includes a second optical transceiver. The local node connects the service-provider device and the plurality of subscriber devices to each other using a DWDM link comprising: a second multiplexer/demultiplexer (OD/OM); and a single-mode optical fiber for transmission. Here, the optical intensity of an output signal of the second optical transceiver is determined by compensating for the value of the loss caused when the output signal passes through the second OD/OM of the local node.
Abstract:
A method and apparatus for implementing a hybrid SOA-Raman amplifier in a central office in order to enable multiple passive optical networks to share one or more enhancement service sources, e.g., to share a source for a broadcast service are disclosed.
Abstract:
Disclosed herein are a remote node and a telephone station terminal in a passive optical network (PON). The remote node includes an optical circulator that transmits downlink signals input from a downlink optical backbone network to a wavelength distributor and transmits uplink signals input from the wavelength distributor to an uplink optical backbone network different from a downlink optical backbone network; and a wavelength distributor that distributes the downlink signal input from the optical circulator into a plurality of wavelengths to be connected to an optical distribution network and connects the uplink signals input from the optical distribution network to the optical circulator.
Abstract:
The present invention relates to an open optical access network system in which one optical access network is open to enable a plurality of service providers and a plurality of subscribers to simultaneously use the optical access network, to thereby improve the efficiency of using the optical access network, wherein each subscriber can be provided with a plurality of different services from the plurality of service providers, thereby enabling the flexible selection of services and the flexible change in services, thus improving the efficiency of using an optical infrastructure.
Abstract:
Provided is an apparatus for connecting a wavelength division multiplexing passive optical network (WDM-PON) to a time division multiplexing passive optical network (TDM-PON). In a hybrid, passive optical network which is a combination of the WDM-PON and the TDM-PON, the apparatus is formed at a subscriber side for matching the WDM-PPN and the TDM-PON. Accordingly, a passive remote mode can be implemented as a passive node not an active node. Therefore, the entire optical network can be efficiently operated. In addition, since the apparatus located on the subscriber side uses a wavelength-tunable light source, any dependency on the wavelength of a WDM-PON optical signal is removed.
Abstract:
A seed light module based on a single longitudinal mode oscillation light source is provided. The seed light module includes a multi-wavelength signal generation light source unit generating a continuous wave (CW) of different wavelengths, a multiplexer wavelength-division multiplexing the light output from the light source unit, a polarization beam splitter splitting the light of multiple wavelength components output from the multiplexer according to specific polarization components, phase modulators phase-modulating signals of a first polarization component and a second polarization component split by the polarization beam splitter onto a sine wave having a frequency and amplitude, a radio frequency (RF) signal generator generating the sine wave, a RF signal distributor distributing the generated RF signal, amplifiers amplifying the distributed RF signals, and a polarization beam combiner combining the lights phase-modulated by the respective phase modulators and providing the combined light as a seed light output.
Abstract:
A spectrum-sliced seed light module for a wavelength division multiplexing passive optical network (WDM PON) is provided. The seed light module includes an optical amplifier to amplify seed light, an optical wavelength filter to transmit broadband light, which is output in opposite direction to an output direction of the seed light, at periodic frequency intervals, and a reflective mirror to reflect light which is spectrum-sliced through the optical wavelength filter to the optical wavelength filter.
Abstract:
The present invention provides an apparatus and method for compensating for the variation of a gain spectrum attributable to the temperature variation of a fiber amplifier, and a long-wavelength band dispersion-compensating hybrid amplifier equipped with the gain spectrum compensating apparatus. The apparatus includes a DCF located between a first amplification stage and a second amplification stage to compensate for dispersion of an optical signal output from the first amplification stage and perform Raman amplification of the optical signal using input pumping light; at least one pumping light provision means for providing forward or backward pumping light to the DCF; first and second temperature detection means for detecting temperature variations of the first and second amplification stages, respectively; and control means for controlling intensity of the pumping light of the pumping light provision means according to the detected temperature variations.