Abstract:
A system for dealing with faults in wavelength division multiplexed (WDM) optical communications between two terminals connected by at least two optical fibers monitors the status of communications over both optical fibers. If both optical fibers are operating normally, a first set of channels is routed over the first optical fiber and a second set of channels (which is mutually exclusive of the first set of channels) is routed over the second optical fiber. However, if a fault is detected in either optical fiber, the first terminal combines the first and second sets of channels and routes the combined channels over the remaining optical fiber to the second terminal. The second terminal separates the combined channels to recreate the first and second sets of channels. Wavelength slicers can be used to multiplex and demultiplex the channels at both terminals. This architecture allows the first and second sets of channels to be interdigitally spaced.
Abstract:
An optical cross-connect network provides wavelength routing of optical channels between two arrays of optical fibers carrying WDM signals using interconnected arrays of optical wavelength switches based on combinations of a 1.times.2 wavelength switch architecture. The cross-connect network can be made by interconnecting two arrays of 1.times.4 wavelength switches, each of which is made by combining three 1.times.2 wavelength switches. Each 1.times.2 optical wavelength switch includes a polarization separation element that decomposes and spatially separates the input signal into two orthogonally-polarized beams, and a wavelength filter that decomposes into the beam pair into two pairs of orthogonally-polarized beams that carry a first spectral band at a first polarization and a second spectral band at an orthogonal polarization. A polarization-dependent routing element spatially separates these four beams into four orthogonally-polarized components. A polarization combining element recombines the beams carrying the first spectral band, and also recombines the beams carrying the second spectral band at the output ports based on the control state of the wavelength switch.
Abstract:
A programmable wavelength router having a plurality of cascaded stages where each stage receives one or more optical signals comprising a plurality of wavelength division multiplexed (WDM) channels. Each stage divides the received optical signals into divided optical signals comprising a subset of the channels and spatially positions the divided optical signals in response to a control signal applied to each stage. Preferably each stage divides a received WDM signal into two subsets that are either single channel or WDM signals. A final stage outputs optical signals at desired locations. In this manner, 2.sup.N optical signals in a WDM signal can be spatially separated and permuted using N control signals.
Abstract:
A switchable wavelength router has a first polarization-dependent routing element (e.g., a birefringent element, polarized beamsplitter, or angled polarization separator) that decomposes and spatially separates an incoming WDM optical signal into two orthogonally-polarized beams. A first polarization rotator selectably rotates the polarization of one of the beams to match the polarization of other beam, based on an external control signal. A wavelength filter (e.g., stacked waveplates) provides a polarization-dependent optical transmission function such that the first beam decomposes into third and fourth orthogonal beams, and the second beam decomposes into fifth and sixth orthogonal beams. The third and fifth beams carry a first spectral band at a first polarization and the fourth and sixth beams carry a second spectral band at an orthogonal polarization. A second polarization-dependent routing element spatially separates these four beams into four horizontally polarized and vertically polarized components. A second polarization rotator rotates the polarizations of the beams so that the third and fifth beams, and the fourth and sixth beams are orthogonally polarized. A third polarization-dependent routing element recombines the third and fifth beams (i.e., the first spectral band), and also recombines the fourth and sixth beams (i.e., the second spectral band) which are coupled to the two output ports based on the control state of the wavelength router.
Abstract:
A switchable wavelength router has a first birefringent element that decomposes and spatially separates an incoming WDM optical signal into two orthogonally-polarized beams. A first polarization rotator selectably rotates the polarization of one of the beams to match the polarization of other beam, based on an external control signal. A wavelength filter (e.g., stacked waveplates) provides a polarization-dependent optical transmission function such that the first beam decomposes into third and fourth orthogonal beams, and the second beam decomposes into fifth and sixth orthogonal beams. The third and fifth beams carry a first spectral band at a first polarization and the fourth and sixth beams carry a second spectral band at an orthogonal polarization. A second birefringent element spatially separates these four beams into four horizontally polarized and vertically polarized components. A second polarization rotator rotates the polarizations of the beams so that the third and fifth beams, and the fourth and sixth beams are orthogonally polarized. A third birefringent element recombines the third and fifth beams (i.e., the first spectral band), and also recombines the fourth and sixth beams (i.e., the second spectral band) which are coupled to the two output ports based on the control state of the wavelength router.
Abstract:
A time dependent dielectric breakdown (TDDB) test device is used for testing a dielectric layer to obtain a time to failure (TTF) data, wherein the TDDB test device is electrically connected between a power source and a current detector and the dielectric layer includes at least a first capacitor and a second capacitor formed about selected first and second locations of the dielectric layer. The device includes a first current-limiting apparatus electrically connected to the first capacitor in series, a second current-limiting apparatus electrically connected to the second capacitor in series and the first current-limiting apparatus in parallel, and a voltage-regulating apparatus electrically connected to the second current-limiting apparatus in series. It also provides a method for implementing such device.
Abstract:
An optical routing switch provides polarization-independent and low-crosstalk switching between any of a plurality of input ports and any of a plurality of output ports over a wide operating range of temperatures and wavelengths. Optical signals appearing at each input port are spatially decomposed into two orthogonally-polarized beams by a first polarization-dependent routing element (e.g., a birefringent element or polarized beamsplitter). Beyond this point, a network of optical switches are placed along the optical paths of the pair of light beams. Each optical switch includes: (1) a polarization rotator that switchably controls the polarization of the input light beams so that both of the emergent beams are either vertically or horizontally polarized, according to the control state of the device; and (2) a polarization-dependent routing element that spatially routes the light beam pair to provide physical displacement based on their state of polarization. The final stage for each output port in the network consists of an array of polarization rotators that changes the polarization of at least one of the light beams, so that the two beams become orthogonally polarized. Finally, a polarization-dependent routing element (e.g., a birefringent element) intercepts the two orthogonally-polarized beams and recombines them to exit at the selected output port.
Abstract:
A twisted nematic liquid crystal-based electro-optic modulator with a twist angle between 0° and 90°, and preferably between 50° and 80° is provided. The modulator provides a relatively rapid switching time such as less than about 50 milliseconds, and provides relatively large extinction ratios, such as greater than −25 dB. Preferably the liquid crystal entrance director differs from the polarization direction by a beta angle of about 15°.
Abstract:
A programmable wavelength router having a plurality of cascaded stages where each stage receives one or more optical signals comprising a plurality of wavelength division multiplexed (WDM) channels. Each stage divides the received optical signals into divided optical signals comprising a subset of the channels and spatially positions the divided optical signals in response to a control signal applied to each stage. Preferably each stage divides a received WDM signal into two subsets that are either single channel or WDM signals. A final stage outputs optical signals at desired locations. In this manner, 2N optical signals in a WDM signal can be spatially separated and permuted using N control signals.
Abstract:
An optical wavelength division multiplex (WDM) demultiplexer can be provided in substantially passive form. In one embodiment a wavelength filter separates alternate channels to provide a first output containing even-numbered channels and a second output containing odd-numbered channels, each output having channels separated by a bandwidth twice the channel separation bandwidth of the original WDM signal.