Abstract:
One or more input signals are used to generate a Pseudo noise generator and re-inject the signal to obtain a more efficient method of control of a receiver using adaptive antenna array technology. The antenna array automatically adjusts its direction to the optimum using information obtained from the input signal by the receiving antenna elements. The input signals may be stored in memory for retrieval, comparison and then used to optimize reception. The difference between the outputs of the memorized signals and the reference signal is used as an error signal.
Abstract:
An antenna system is capable of optimizing communication link quality with one or multiple transceivers while suppressing one or multiple interference sources. The antenna provides a low cost, physically small multi-element antenna system capable of being integrated into mobile devices and designed to form nulls in the radiation pattern to reduce interference from unwanted interferers. The antenna system operates in both line of sight and high multi-path environments by adjusting the radiation pattern and sampling the received signal strength to reduce signal levels from interferers while monitoring and optimizing receive signal strength from desired sources.
Abstract:
A system and method are provided for wireless communication to operate with multiple network connections sequentially based on priorities. The system includes a first antenna configured to transmit and receive signals in WLAN and to be a modal antenna having multiple first modes corresponding to multiple first radiation patterns, respectively, a second antenna configured to transmit and receive signals in WWAN, the second antenna having at least one second mode; and a processor coupled to the first antenna and the second antenna. The second antenna may also be a modal antenna having multiple second modes.
Abstract:
One or more input signals are used to generate a Pseudo noise generator and re-inject the signal to obtain a more efficient method of control of a receiver using adaptive antenna array technology. The antenna array automatically adjusts its direction to the optimum using information obtained from the input signal by the receiving antenna elements. The input signals may be stored in memory for retrieval, comparison and then used to optimize reception. The difference between the outputs of the memorized signals and the reference signal is used as an error signal.
Abstract:
A multi-band antenna system for MIMO applications is adapted to provide high isolation between antennas across a wide range of frequencies. Multiple Isolated Magnetic Dipole (IMD) antennas are co-located and connected with a feed network that can include switches that adjust phase length for transmission lines connecting the antennas. Filtering is integrated into the feed network to improve rejection of unwanted frequencies. Filtering can also be implemented on the antenna structure. Either one or multi-port antennas can be used.
Abstract:
A multi-layer reactively loaded isolated magnetic (IMD) dipole with improved bandwidth and efficiency characteristics to be used in wireless communications and other applicable systems. The multi-layer IMD antenna comprises a first element positioned above a ground plane, a second element positioned above a ground plane and coupled to the first portion. Reactive components are integrated into one or both elements to optimize the frequency response of the antenna. The range of frequencies covered to be determined by the shape, size, and number of elements in the physical configuration of the components. Portions of or the entire ground plane can be removed beneath the elements.
Abstract:
A multi-layer isolated magnetic dipole (IMD) with improved bandwidth and efficiency characteristics to be used in wireless communications and other applicable systems. The multi-layer IMD antenna comprises an IMD element positioned above a ground plane, a conductive element positioned above a ground plane and coupled to the first portion having one or more slot regions being defined between the IMD element and the conductive element and one or more capacitive elements positioned across the one or more slot regions. The range of frequencies covered to be determined by the shape, size, and number of elements in the physical configuration of the components.
Abstract:
An antenna configured for low frequency applications on a mobile device includes an antenna element coupled to a conductive structure which, in turn, is coupled to the user of the mobile device such that the user of the mobile device effectively becomes part of the antenna. The conductive structure can include, for example, the device housing being made from a conductive material, a conductive structure embedded inside the device housing, or conductive pads exposed in the device housing. The antenna element is electrically connected to the conductive structure and the user can be coupled to the conductive structure either through direct contact or through capacitive coupling. In addition, the antenna can include an active element configured to boost free space operation efficiency. The active element can include, for example, a low noise amplifier integrated onto a low noise amplifier board. The active element can be at least partially surrounded by a hollow support structure around which an antenna coil is wrapped, where the antenna coil is coupled to the active element. Furthermore, one or more antenna coils can be utilized either separately or in conjunction with the antenna for low frequency applications, where the one or more antenna coils can have integrated therein inductive components and/or active/switching elements that allow the one or more antenna coils to be tuned to a desired frequency.
Abstract:
A conductive layer is applied to a thermoformed plastic component to form an integrated antenna assembly. The conductive layer is on a flexible layer and adhered or attached to the rigid thermoformed plastic carrier. Features are designed into the thermoformed plastic carrier to provide electrical contacts from the conductive layer to the circuit board of the communication device and to mechanically attach the carrier to the circuit board. Multiple conductive layers can be applied to a multi-layered thermoformed structure to form a multi-antenna assembly.
Abstract:
Techniques are provided to prevent undesired and/or unauthorized analysis and access to electronic components designs. A shield can be utilized to prevent invasive and/or non-invasive analysis methods such as the use of x-rays to determine the structural configuration and/or component makeup of an embedded antenna. In addition, a damageable material that can be utilized alone or in conjunction with the shield is also provided. When attempting to access the antenna and/or components included therein, any inappropriate force or exposure to certain elements, such as heat, will cause the material and the antenna and/or the components therein to be damaged or melted beyond a point of useful recognition for the entity. Furthermore, thin films can be utilized to construct one or more portions of the antenna to the same effect. In addition, the antenna and/or components can be configured for actively reconfiguring a resonant frequency of the antenna.