Abstract:
A retracting mechanism for a lens barrel includes a non-rotatable member having an engagement surface; and a frame movable along an axis relative to the non-rotatable member without rotation and having a holder, the holder being movable between an aligned position in which an imaging element thereof is substantially aligned with the axis and a displaced position in which the imaging element is displaced relative to the aligned position. The holder includes an engagement surface which contacts the engagement surface of the non-rotatable member during movement of the frame towards the non-rotatable member, and moves the holder from the aligned position to the displaced position. The non-rotatable member includes a guide key or a key groove, and the frame includes a corresponding key groove or guide key, the guide key and the key groove being slidably engageable with each other and guiding the frame.
Abstract:
An electronic still camera includes an image pickup element provided in an optically isolated space which is opened and closed by a shutter, and an image pickup optical system which makes object light incident upon the image pickup element. An image pickup light path defined between the shutter and the image pickup element is sealed by a sealing member.
Abstract:
An optical system for an optical disc drive includes a light source, an objective lens and a collimator lens. The light source emits first and second light beams. The first light beam is for reproducing data from a digital versatile disc while the second light beam is for a compact disc. The objective lens is provided with a diffraction structure which is designed to focus the first light beam on a recording layer of the digital versatile disc and the second light beam on a recording layer of the compact disc. The collimator lens is disposed between the light source and the objective lens. The collimator lens adjusts the diverging/converging angle of the first and second light beams entering the objective lens. The change in spherical aberration of the first light beam caused by wavelength deviation from a design wavelength due to individual specificity of the light source is corrected by adjusting the diverging/converging angle of the first light beam emerging from the collimator lens.
Abstract:
A zoom lens system includes a positive first lens group, a negative second lens group, a positive third lens group and a positive fourth lens group. Upon zooming, each of the first through fourth lens groups independently move along the optical axis. The positive first lens group includes a negative first lens element and a positive second lens element, in this order from the object. The zoom lens system satisfies the following conditions: n1-2>1.68nullnull(1)1.35
Abstract:
There is provided a multifocal spectacle lens having a front surface and a back surface each of the front surface and the back surface is formed as a multifocal surface or a progressive-power surface, distributions of surface power of the front surface and the back surface being different from each other.
Abstract:
A multi-beam scanning device includes a light source for emitting a plurality of laser beams, a polygon mirror for deflecting the laser beams so that the laser beams scan across an object surface in a main scanning direction, an fnull lens disposed between the polygon mirror and the object surface, and a cylindrical lens that converges each laser beam in a vicinity of the polygon mirror in the auxiliary direction. A mirror is disposed between the light source and the cylindrical lens which deflects the laser beams in the auxiliary scanning direction. The mirror is rotatably supported by a mirror holder such that the traveling direction of the laser beams deflected by the mirror can be adjusted.
Abstract:
An objective lens for an optical pickup has a single lens element. One surface of the objective lens is divided into a central area and a peripheral area, and a step providing a level difference along a direction of the optical axis is formed at a boundary therebetween. The step provides a phase shift between light passing through the central area and the peripheral area. The level difference is formed such that a thickness on the peripheral area side is greater than a thickness on the central area side at the boundary. In one case, the objective lens satisfies a condition:0.83
Abstract:
A one-way rotational transfer mechanism includes a rotary input shaft having a surface lying orthogonal to an axis of the rotary input shaft, a hollow-cylindrical rotary output shaft positioned around the rotary input shaft to be rotatable relative to the rotary input shaft, a circumferentially-uneven-width-space forming portion formed on the rotary input shaft to be adjacent to the orthogonal surface to form at least one accommodation space between the rotary input shaft and the cylindrical inner peripheral surface, at least one rotatable member installed in the accommodation space, and a biasing device for pressing the orthogonal surface and the rotatable member toward each other. The circumferentially-uneven-width-space forming portion is shaped so that rotation of the rotary input shaft is transferred to the hollow-cylindrical rotary output shaft via the rotatable member to which rotation is given from the orthogonal surface.
Abstract:
A zoom lens system includes a first to a third lens groups. Upon zooming, the distance between the first and second lens groups increases, the distance between the second and third lens groups decreases. Each lens group is positioned closest to the object at the long focal length extremity. The third lens group includes first and second sub-lens groups. The first sub-lens group with at least one aspherical surface is positioned at the object-side end a reference distance, and the negative second sub-lens group is positioned at the image-side end thereof. The zoom lens system satisfies the following conditions: 1.7
Abstract:
An automatic gain control device for an electronic endoscope is provided and comprises a controllable gain amplifier, an A/D converter, a histogram circuit, and a CPU. The controllable gain amplifier amplifies image signals from an imaging device. Amplified image signals from the controllable gain amplifier are input to the A/D converter. A histogram of the amplified image signals from the controllable gain amplifier is produced by the histogram circuit when an image taken in a white-balance test accessory is taken. By using the CPU, the gain of the controllable gain amplifier is adjusted in accordance with the determination of whether a saturated pixel exists for signals in the tolerance range of the A/D converter, so that a linear region of the image signals from the controllable gain amplifier substantially coincides with the tolerance range.