Abstract:
According to one embodiment of the present invention, a system for encoding an optical spectrum includes a dispersive element, a digital micromirror device (DMD) array, a detector, and a controller. The dispersive element receives light from a source and disperses the light to yield light components of different wavelengths. The digital micromirror device (DMD) array has micromirrors that modulate the light to encode an optical spectrum of the light. The detector detects the light that has been modulated. The controller generates an intensity versus time waveform representing the optical spectrum of the detected light.
Abstract:
An improved color processing method for use in imaging systems transforms the input color image components into an output set of color image components, at least one of which is transformed using a non-linear transformation function.
Abstract:
Disclosed embodiments relate to techniques for color gamut mapping when an input signal transmitting color visual images has a different color gamut than does the output display device. Polynomial rubber-sheet mapping may be used to translate the input color gamut to the output color gamut on a hue-by-hue basis within a three-dimensional perceptual color space. Also, a memory color look-up table may be used to preserve memory colors in the input gamut which are capable of reproduction within the output gamut. By using such techniques alone or in combination, it may be possible to more effectively map an input color gamut to a different output color gamut with improved calorimetric accuracy.
Abstract:
A method for sending IP packets from a base station to a mobile station during transition of the mobile station from a dormant state to an active state is provided. The method includes receiving a lagging feature request from the mobile station. A physical layer of a traffic channel is established between the base station and the mobile station. A network layer of the traffic channel is established between the base station and the mobile station. After the physical layer of the traffic channel is established and while the network layer of the traffic channel is being established, the IP packets are packaged and sent to the mobile station in a particular format.
Abstract:
In an example, the eyewear includes an optical element, electronic components, and a support structure configured to support the optical element and the electronic components. The support structure defines a region for receiving at least a portion of a head of a user. The eyewear also includes a biometric sensor coupled to the electronic components and supported by the support structure. The biometric sensor is attached to the support structure and positioned to detect, in the region, a biometric signal representative of a biometric of the user for processing by the electronic components.
Abstract:
In an example, the eyewear includes an optical element, electronic components, and a support structure configured to support the optical element and the electronic components. The support structure defines a region for receiving at least a portion of a head of a user. The eyewear also includes a biometric sensor coupled to the electronic components and supported by the support structure. The biometric sensor is attached to the support structure and positioned to detect, in the region, a biometric signal representative of a biometric of the user for processing by the electronic components.
Abstract:
Eyewear including a support structure defining a region for receiving a head of a user. The support structure supports optical elements, electronic components, and a use detector. The use detector is coupled to the electronic components and is positioned to identify when the head of the user is within the region defined by the support structure. The electronic components monitor the use detector and transition from a first mode of operation to a second mode of operation when the use detector senses the head of the user in the region.
Abstract:
A system comprises an eyewear device that includes a frame, a temple connected to a lateral side of the frame, an infrared emitter, and an infrared camera. The infrared emitter and the infrared camera are connected to the frame or the temple to emit a pattern of infrared light. The system includes a processor coupled to the eyewear device, a memory accessible to the processor, and programming in the memory. Execution of the programming by the processor configures the system to perform functions, including functions to emit, via the infrared emitter, a pattern of infrared light on an eye of a user of the eyewear device; capture, via the camera, reflection variations in the pattern of infrared light on the eye of the user; and identify a user of the eyewear device based on the reflection variations of the emitted pattern of infrared light on the eye of the user.
Abstract:
A system comprises an eyewear device that includes a frame, a temple connected to a lateral side of the frame, a fingerprint sensor, and a sensing circuit. The fingerprint sensor includes an input surface to receive input of a finger skin surface. The sensing circuit is configured to track a pattern of fingerprint ridges of the finger skin surface on the input surface. Execution of programming by a processor configures the system to perform functions to track, via the sensing circuit, the pattern of fingerprint ridges of the finger skin surface on the input surface; generate a fingerprint image having the tracked pattern of fingerprint ridges; extract fingerprint features from the fingerprint image; and authorize the user to utilize the eyewear device based on the extracted fingerprint features.