Abstract:
A wireless device receives a request to originate a data call, e.g., from the user or a higher layer application. If origination control is not to be applied, then the wireless device originates the data call immediately. Otherwise, the origination of the data call is controlled based on prior data call origination attempts that are applicable to the data call. For example, the wireless device may originate the data call immediately if (1) the most recent origination attempt was successful or (2) the most recent origination attempt was unsuccessful but a predetermined time period has elapsed since this unsuccessful origination attempt. If the most recent origination attempt was unsuccessful and the predetermined time period has not elapsed, then the wireless device may (1) wait until this predetermined time period elapses and then originate the data call or (2) reject the data call.
Abstract:
Wireless devices with different capabilities may use a single file containing multiple (e.g., two) PRLs for system selection and acquisition. A first PRL in the file has a first (e.g., IS-683-A) format and includes PRL information for, e.g., 1x systems. A second PRL has a second (e.g., IS-683-C) format and includes PRL information for, e.g., 1x and 1xEV-DO systems or just 1xEV-DO systems. A legacy wireless device supporting only IS-683-A would read and use the first PRL for system selection and acquisition and ignore the second PRL. A wireless device supporting IS-683-C would read the second PRL and (1) use the second PRL by itself if it contains PRL information for both 1x and 1xEV-DO systems or (2) combine the first and second PRLs to generate a combined PRL if the second PRL contains PRL information for only 1xEV-DO systems.
Abstract:
Techniques for efficient storage and retrieval of Preferred Roaming Lists are disclosed. In one aspect, PRL entries are stored in two tables. One table contains records that are common to two or more PRL entries. Another table stores any information that is unique to a PRL entry, as well as an indicator of which common record is associated with it. The common record is concatenated with the unique information to generate the uncompressed PRL entry. Various other aspects of the invention are also presented. These aspects have the benefit of reducing the memory requirements for storing a PRL. In addition, time required to download the compressed PRL is reduced.
Abstract:
A wireless device receives a request to originate a data call, e.g., from the user or a higher layer application. If origination control is not to be applied, then the wireless device originates the data call immediately. Otherwise, the origination of the data call is controlled based on prior data call origination attempts that are applicable to the data call. For example, the wireless device may originate the data call immediately if (1) the most recent origination attempt was successful or (2) the most recent origination attempt was unsuccessful but a predetermined time period has elapsed since this unsuccessful origination attempt. If the most recent origination attempt was unsuccessful and the predetermined time period has not elapsed, then the wireless device may (1) wait until this predetermined time period elapses and then originate the data call or (2) reject the data call.
Abstract:
A mobile station includes processing circuitry and a memory storing a preferred roaming list and system priority data. The processing circuitry is adapted to detect a communications event for a currently selected wireless communications system and update an entry in the system priority data to reflect the occurrence of the detected communications event. The use of stored statistical information improves the efficiency of the system selection and acquisition process. In operation, a group of wireless communications systems is selected from the preferred roaming list in accordance with a predetermined system acquisition procedure. The group is reprioritized using the priority data and the mobile station attempts to select the wireless communications system having the highest priority in the reprioritized group. The reprioritization may include sorting the group using the priority data and removing systems from the group that do not meet certain priority criteria.
Abstract:
Techniques for performing automatic call origination for multiple wireless networks are described. A terminal automatically originates a call and supports fallback in case of call origination failure. The terminal selects the most preferred wireless network for the call based on network availability and network selection information. The terminal attempts origination of the call on the selected wireless network. If the call origination fails, then the terminal may select an alternate wireless network based on network availability and the network selection information and may attempt origination of the call on the alternate wireless network. If a VoIP call is preferred over a circuit-switched voice call, then the terminal may first attempt origination of a VoIP call on a packet-switched wireless network. If the VoIP call fails, then the terminal may attempt origination of a circuit-switched voice call on a circuit-switched wireless network.
Abstract:
Methods, apparatuses and computer program products for causing a subscriber station (100) to attempt to acquire one of a plurality of systems. The subscriber station (100) first detects an event that triggers use of a system acquisition schedule. The system acquisition schedule, which can be time based or sequence based, defines when to attempt to acquire a desired system. The subscriber station (100) attempts to acquire the desired system in accordance with the system acquisition schedule. The subscriber station (100) performs other functions when the system acquisition schedule does not indicate an attempt should be made to acquire the desired system. Such other functions can include attempting to acquire other systems when the system acquisition schedule does not indicate an attempt should be made to acquire the desired system.