Abstract:
Techniques and systems are described to recolor a group of images for color consistency. Techniques include extracting color palettes for images of the group of images and generating a group theme color palette based on the color palettes for the images. Image color palettes are then mapped to the group theme color palette and the images are modified in response to the mapping. In some examples, the mapping includes discouraging multiple colors of a single color palette from mapping to a single color of the group theme color palette. Additionally, or alternatively, the mapping includes discouraging a forced mapping of a dissimilar color of an image color palette from mapping to the group theme color palette.
Abstract:
User input-based object selection using multiple visual cues is described. User selection input is received for selecting a portion of an image. Once the user selection input is received, one of a plurality of visual cues that convey different information about content depicted in the image is selected for each pixel. The one visual cue is selected as a basis for identifying the pixel as part of the selected portion of the image or part of an unselected remainder of the image. The visual cues are selected by determining confidences, based in part on the user selection input, that the plurality of visual cues can be used to discriminate whether the pixel is part of the selected portion or part of the remainder. The information conveyed by the selected visual cues is used to identify the pixels as part of the selected portion or part of the remainder.
Abstract:
Techniques and systems are described to model and extract knowledge from images. A digital medium environment is configured to learn and use a model to compute a descriptive summarization of an input image automatically and without user intervention. Training data is obtained to train a model using machine learning in order to generate a structured image representation that serves as the descriptive summarization of an input image. The images and associated text are processed to extract structured semantic knowledge from the text, which is then associated with the images. The structured semantic knowledge is processed along with corresponding images to train a model using machine learning such that the model describes a relationship between text features within the structured semantic knowledge. Once the model is learned, the model is usable to process input images to generate a structured image representation of the image.
Abstract:
Probabilistic determination of selected image portions is described. In one or more implementations, a selection input is received for selecting a portion of an image. For pixels of the image that correspond to the selection input, probabilities are determined that the pixels are intended to be included as part of a selected portion of the image. In particular, the probability that a given pixel is intended to be included as part of the selected portion of the image is determined as a function of position relative to center pixels of the selection input as well as a difference in one or more visual characteristics with the center pixels. The determined probabilities can then be used to segment the selected portion of the image from a remainder of the image. Based on the segmentation of the selected portion from the remainder of the image, selected portion data can be generated that defines the selected portion of the image
Abstract:
Joint depth estimation and semantic labeling techniques usable for processing of a single image are described. In one or more implementations, global semantic and depth layouts are estimated of a scene of the image through machine learning by the one or more computing devices. Local semantic and depth layouts are also estimated for respective ones of a plurality of segments of the scene of the image through machine learning by the one or more computing devices. The estimated global semantic and depth layouts are merged with the local semantic and depth layouts by the one or more computing devices to semantically label and assign a depth value to individual pixels in the image.
Abstract:
Saliency map computation is described. In one or more implementations, a base saliency map is generated for an image of a scene. The base saliency map may be generated from intermediate saliency maps computed for boundary regions of the image. Each of the intermediate saliency maps may represent visual saliency of portions of the scene that are captured in the corresponding boundary region. The boundary regions may include, for instance, a top boundary region, a bottom boundary region, a left boundary region, and a right boundary region. Further, the intermediate saliency maps may be combined in such a way that an effect of a foreground object on the saliency map is suppressed. The foreground objects for which the effect is suppressed are those that occupy a majority of one of the boundary regions.
Abstract:
Combined selection tool techniques are described in which selection of portions within an image is enabled via a tool configured to selectively switch between a coarse selection mode and a refinement selection mode. In one or more implementations, an image is exposed for editing in a user interface and input is obtained to select portions of the image using the tool. The selection mode is automatically toggled between the coarse selection mode and refinement selection mode based on characteristics of the input, such as position and velocity of the input or gestures mapped to the input. Then, selection boundaries defining the selection of portions of the image are modified in accordance with the input. In one approach, the coarse selection mode corresponds to a graph cut mechanism and the refinement selection mode corresponds to a level set mechanism.
Abstract:
Depth map stereo correspondence techniques are described. In one or more implementations, a depth map generated through use of a depth sensor is leveraged as part of processing of stereo images to assist in identifying which parts of stereo images correspond to each other. For example, the depth map may be utilized to describe depth of an image scene which may be used as part of a stereo correspondence calculation. The depth map may also be utilized as part of a determination of a search range to be employed as part of the stereo correspondence calculation.
Abstract:
Image matting and alpha value techniques are described. In one or more implementations, techniques are described in which matting operations are applied to image data that is in a raw or substantially raw image format. This may be used to decompose image data into foreground and background images as well as to generate an alpha value that describes a linear combination of the foreground and background images for a respective pixel. Further, implementations are also described in which a plurality of alpha values is generated for each of a plurality of pixels. These alpha values may be utilized to support a variety of different functionality, such as matting operations and so on.
Abstract:
Methods and apparatus for disparity map correction through statistical analysis on local neighborhoods. A disparity map correction technique may be used to correct mistakes in a disparity or depth map. The disparity map correction technique may detect and mark invalid pixel pairs in a disparity map, segment the image, and perform a statistical analysis of the disparities in each segment to identify outliers. The invalid and outlier pixels may then be corrected using other disparity values in the local neighborhood. Multiple iterations of the disparity map correction technique may be performed to further improve the output disparity map.