Abstract:
An intermediary system operates as an intermediary between content servers and user devices, and provides services for improving page load times as seen by end users. One such service involves converting all or a portion of a retrieved content page (e.g., web page) into a stream of graphics commands, such as OpenGL commands, that can be executed by the user device's graphics processing unit (GPU). The intermediary system sends these commands to a browser component running on the user device for execution by the GPU.
Abstract:
Features are disclosed for determining which content item or items are likely to be requested by a particular user or device, or by a group of users or devices. The determined content items may be obtained independently of a request from the users or devices, and substantially current versions of the content items may be maintained at a server system, such as an intermediary system. Visual representations of the content items may be generated to reduce processing requirements at a user device. When the content items are determined to be likely to be requested by a particular user, a predicted time may also be determined, and the visual representations may be generated such that they are available at the predicted time.
Abstract:
Server systems are disclosed that receive content request and respond with hardware-independent graphics commands instead of, or in addition to, unprocessed content items. Some server systems may act as intermediaries between user devices and content sources. The server systems can obtain content pages from content sources, process the content pages (e.g., using a headless browser), and provide hardware-independent graphics commands (e.g., vector graphics commands, that do not require specialized graphics hardware for execution) to user devices in response to requests for content. The hardware-independent graphics commands can be executed by client browsers to generate a representation of the content page that is the same or substantially the same as the representation that would have been generated by processing the content pages locally. A user device in receipt of such hardware-independent graphics commands can execute them without performing traditional content page processing, thereby improving user-perceived page load times.
Abstract:
Server systems are disclosed that receive content requests and respond with hardware-independent graphics commands instead of, or in addition to, unprocessed content items. The server systems can also generate text information regarding text in the requested content items, and provide the text information to user devices so that the user devices can have knowledge of the text in the content item. The user device can use the text information to handle user interactions with the content item, including copy, paste and search commands and other similar commands. Accordingly, the hardware-independent graphics commands-based representation may provide text interactivity and effects not otherwise available to content representations based on graphics commands or images of content.
Abstract:
Features are disclosed for generating request decision models for use by client computing devices to determine request paths or modes for content requests. The request modes may correspond to direct requests (e.g., requests made from a client device directly to a content server hosting requested content) or to indirect requests (e.g., requests made from the client device to the content server via an intermediary system). The request decision models may be trained by a machine learning algorithm using performance data (e.g., prior content load times), contextual information (e.g., state information associated with devices at times content requests are executed), and the like.