AUTOMATIC PATIENT POSITIONING WITHIN A LASER EYE SURGERY SYSTEM

    公开(公告)号:US20220269829A1

    公开(公告)日:2022-08-25

    申请号:US17662829

    申请日:2022-05-10

    Abstract: A laser eye surgery system produces a treatment beam that includes a plurality of laser pulses. An optical coherence tomography (OCT) subsystem produces a source beam used to locate one or more structures of an eye. The OCT subsystem is used to sense the distance between a camera objective on the underside of the laser eye surgery system and the patient's eye. Control electronics compare the sensed distance with a pre-determined target distance, and reposition a movable patient support toward or away the camera objective until the sensed distance is at the pre-determined target distance. A subsequent measurement dependent upon the spacing between the camera objective and the patient's eye is performed, such as determining the astigmatic axis by observing the reflection of a plurality of point source LEDs arranged in concentric rings off the eye.

    Laser eye surgery lens fragmentation

    公开(公告)号:US11406537B2

    公开(公告)日:2022-08-09

    申请号:US16440846

    申请日:2019-06-13

    Abstract: A laser eye surgery system includes a laser to generate a laser beam. A spatial measurement system generates a measurement beam and measure a spatial disposition of an eye. A processor is coupled to the laser and the spatial measurement system, the processor comprising a tangible medium embodying instructions to determine a spatial model of the eye in an eye coordinate reference system based on the measurement beam. The spatial model is mapped from the eye coordinate reference system to a machine coordinate reference system. A laser fragmentation pattern is determined based on a plurality of laser fragmentation parameters. The laser fragmentation pattern and the spatial model is rotated by a first rotation angle such that the spatial model is aligned with the reference axis of the machine coordinate reference system and the rotated laser fragmentation pattern is aligned with the corneal incision.

    CONFOCAL LASER EYE SURGERY SYSTEM
    33.
    发明申请

    公开(公告)号:US20220110520A1

    公开(公告)日:2022-04-14

    申请号:US17645747

    申请日:2021-12-23

    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.

    CLOSED-LOOP LASER EYE SURGERY TREATMENT

    公开(公告)号:US20210251807A1

    公开(公告)日:2021-08-19

    申请号:US17307964

    申请日:2021-05-04

    Abstract: A laser eye surgery system includes a laser to generate a laser beam. A topography measurement system measures corneal topography. A processor is coupled to the laser and the topography measurement system, the processor embodying instructions to measure a first corneal topography of the eye, A first curvature of the cornea is determined. A target curvature of the cornea that treats the eye is determined. A first set of incisions and a set of partial incisions in the cornea smaller than the first set of incisions are determined. The set of partial incisions is incised on the cornea by the laser beam. A second corneal topography is measured. A second curvature of the cornea is determined. The second curvature is determined to differ from the target curvature and a second set of incisions are determined. The second set of incisions is incised on the cornea.

    METHODS AND SYSTEMS FOR OPTHALMIC MEASUREMENTS AND LASER SURGERY AND METHODS AND SYSTEMS FOR SURGICAL PLANNING BASED THEREON

    公开(公告)号:US20210077300A1

    公开(公告)日:2021-03-18

    申请号:US17103907

    申请日:2020-11-24

    Abstract: An ophthalmic measurement and laser surgery system includes: a laser source; a corneal topography subsystem; an axis determining subsystem; a ranging subsystem comprising an Optical Coherence Tomographer (OCT); and a refractive index determining subsystem. All of the subsystems are under the operative control of a controller. The controller is configure to: operate the corneal topography subsystem to obtain corneal surface information; operate the axis determining subsystem to identify one or more ophthalmic axes of the eye; operate the OCT to sequentially scan the eye in a plurality of OCT scan patterns, the plurality of scan patterns configured to determine an axial length of the eye; operate the refractive index determining subsystem so to determine an index of refraction of one or more ophthalmic tissues, wherein at least one of the corneal surface information, ophthalmic axis information, and axial length is modified based on the determined index of refraction.

    Methods and systems for ophthalmic measurements and laser surgery and methods and systems for surgical planning based thereon

    公开(公告)号:US10849789B2

    公开(公告)日:2020-12-01

    申请号:US15269781

    申请日:2016-09-19

    Abstract: An ophthalmic measurement and laser surgery system includes: a laser source; a corneal topography subsystem; an axis determining subsystem; a ranging subsystem comprising an Optical Coherence Tomographer (OCT); and a refractive index determining subsystem. All of the subsystems are under the operative control of a controller. The controller is configure to: operate the corneal topography subsystem to obtain corneal surface information; operate the axis determining subsystem to identify one or more ophthalmic axes of the eye; operate the OCT to sequentially scan the eye in a plurality of OCT scan patterns, the plurality of scan patterns configured to determine an axial length of the eye; operate the refractive index determining subsystem so to determine an index of refraction of one or more ophthalmic tissues, wherein at least one of the corneal surface information, ophthalmic axis information, and axial length is modified based on the determined index of refraction.

    ADDITIVE MANUFACTURING INSIDE THE HUMAN EYE
    37.
    发明申请

    公开(公告)号:US20200297480A1

    公开(公告)日:2020-09-24

    申请号:US16894715

    申请日:2020-06-05

    Abstract: Additive manufacturing techniques are used to form an artificial intra-ocular lens (IOL) directly inside the human eye. Small openings are formed in the cornea and lens capsule of the eye, and the crystalline lens is broken up and removed through the openings; then, a material is injected into the lens capsule through the openings, and the focal spot of a pulse laser beam is scanned in a defined pattern in the lens capsule, to transform the material in the vicinity of the lase focal spot to form the IOL in a layer-by-layer manner. In one embodiment, stereolithography techniques are used where a pulse UV laser source is used to photosolidify a photopolymer resin. The liquefied resin is injected into the eye through the openings, after which only part of the resin, having the shape of the desired IOL, is selectively cured with the UV laser beam, via progressive layer formation.

    Methods and systems for corneal topography, blink detection and laser eye surgery

    公开(公告)号:US10706560B2

    公开(公告)日:2020-07-07

    申请号:US16004292

    申请日:2018-06-08

    Abstract: A method of blink detection in a laser eye surgical system includes providing a topography measurement structure having a geometric marker. The method includes bringing the topography measurement structure into a position proximal to an eye such that light traveling from the geometric marker is capable of reflecting off a refractive structure of the eye of the patient, and also detecting the light reflected from the structure of the eye for a predetermined time period while the topography measurement structure is at the proximal position. The method further includes converting the light reflected from the surface of the eye into image data and analyzing the image data to determine whether light reflected from the geometric marker is present is in the reflected light, wherein if the geometric marker is determined not to be present, the patient is identified as having blinked during the predetermined time.

Patent Agency Ranking