Abstract:
A system identifies the location of a user and presents location aware stimulus material to the user. Discounts, promotions, and advertising can be delivered to the user on a wireless device based on location and path information. Stimulus material on in store monitors, billboards, and displays are modified based on information about individuals near the monitors and displays. In particular embodiments, neuro-response data is collected using a portable electroencephalography (EEG) headset while a user is exposed to stimulus materials to allow the effectiveness of the stimulus material to be determined. Stimulus materials presented can also be evaluated for neuro-response effectiveness prior to presentation to users in a location aware and personalized manner.
Abstract:
A system presents stimulus materials such as products, product packages, displays, services, offerings, etc., in virtual reality environments such as market aisles, store shelves, showroom floors, etc. Sensory experiences output to the user via the virtual reality environment elicit user interactivity. User activity and responses are used to modify marketing materials and/or virtual reality environments. Neuro-response data including electroencephalography (EEG) data is collected from users in order to evaluate the effectiveness of marketing materials in virtual reality environments. In particular examples, neuro-response data is used to modify marketing materials and virtual reality environments presented to the user.
Abstract:
A nicotine delivery reduction system includes an electronic cigarette having a breath monitor and a flow controller. The breath monitor detects user breath characteristics such as breath duration, rate, depth, and strength and adjusts the amount of nicotine delivered to the user based on user breath characteristics. In particular examples, if the user is breathing with more urgency, additional nicotine is delivered to the user. The nicotine delivery reduction system also includes an interface to allow implementation of different reduction programs based on personal preferences and characteristics. If the user is breathing normally, the flow controller gradually reduces the level of nicotine delivered to the user. The nicotine delivery reduction system maintains user breath characteristics over time to allow reduction and possible elimination of nicotine dependence. Neuro-response data including electroencephalography (EEG) can be obtained and analyzed to determine the effectiveness of a nicotine reduction program.
Abstract:
A marketing materials presentation system identifies wait states such as loading states and idle states and selects marketing materials for presentation during wait states. Marketing materials may be selected based on materials viewed prior to a wait state and activity requested that triggered the wait state. In some examples, characteristics of a viewer including demographic informational, profile data, past viewing and purchase activity, neuro-response data, etc., is analyzed to select wait state marketing materials. Wait state marketing materials may also be selected using wait state characteirstics and marketing material characteristics.
Abstract:
A system modifies video by embedding portions of media, such as subsets of image pixels, in video frames. When the video is played at normal speed, the media is not discernible. However, when the video is played at an accelerated rate in the forward or reverse direction, the portions of images embedded in video frames coalesce into discernible media. The embedded media may be simple text, images, video, audio, or other media. The system may also evaluate base videos as well as insertion media using neuro-response measurements to determine how and what type of media to embed. The media may be embedded in real-time or near real-time into video for delivery to a user for playback on devices such as digital video recorders, computer systems, software and hardware players, cable boxes, etc.
Abstract:
Example methods, systems and machine readable instructions are disclosed for assessing advertising effectiveness based on neurological data. An example method includes analyzing neuro-response data from a panelist exposed to media to determine a first score representative of an attention level of the panelist, a second score representative of an emotional engagement of the panelist, and a third score representative of memory activity of the panelist. In addition, the example method includes calculating a persuasion metric, a novelty metric and an awareness metric based on the first, second and third scores.
Abstract:
A system obtains neuro-response data as well as survey based data during discrete choice modeling to evaluate subject decision making processes. A discrete choice model evaluates a decision made by a subject as a function of multiple variables. Neuro-response data vectors and orthogonal survey based data vectors are weighted and combined to generate multi-dimensional vectors. The multi-dimensional vectors are used to estimate the effectiveness of changing particular variables in modifying subject behavior.
Abstract:
An advertisement exchange determines characteristics associated with advertisement slots such as slots in a commercial pod, locations on a printed page, banners in a video, billboards, etc. Characteristics may include demographic information, advertisement type, and neuro-response characteristics such as priming, attention, engagement, and retention. Advertisement slots are matched with advertisements and may be selected, purchased, exchanged, and analyzed by advertisers, individuals, corporations, and firms. In some examples, bids and offers are made for advertisement slots based on advertisement slot characteristics. Advertisement slot characteristics may be changed in real-time as placement of advertisements in surrounding slots changes the characteristics of a particular slot.
Abstract:
A system analyzes neuro-response measurements including regional electroencephalography (EEG) measurements from subjects exposed to stimulus materials to determine locations in stimulus materials eliciting controlled attention and automatic attention. Additional stimulus materials are inserted into locations having salient attention attributes. In some examples, a challenging task is used to direct controlled attention onto a location and additional stimulus material is subtly presented in the location to benefit from automatic attention and salient attention measurements.
Abstract:
The human mirror neuron system includes neurons that fire both when an individual performs an action and when the individual observes the action being performed by another. Neuro-response data involving the mirror neuron system is collected as a subject is exposed to stimulus material. The stimulus material may include individuals performing actions such as making a purchase, accepting an offer, participating in an activity, etc. Neuro-response data involving the mirror neuron system of the subject is analyzed to determine the propensity of the subject to act.