摘要:
For quasi-orthogonal multiplexing in an OFDMA system, multiple (M) sets of traffic channels are defined for each base station. The traffic channels in each set are orthogonal to one another and may be pseudo-random with respect to the traffic channels in each of the other sets. The minimum number of sets of traffic channels (L) is used to support a given number of (U) terminals selected for data transmission, where M≧L≧1 and U≧1. Each terminal transmits data and pilot symbols on its traffic channel. A base station receives data transmissions from all terminals and may perform receiver spatial processing on received symbols with spatial filter matrices to obtain detected data symbols. The spatial filter matrix for each subband may be derived based on channel response estimates for all terminals transmitting on that subband.
摘要:
A method and apparatus to determine whether a transmission was successfully received in a multiple access communication system is claimed. First and second encoded data packets are received and decoded. The first and second data packets are then re-encoded, and correlated to determine whether the first and second re-encoded data packets are the same. If there is a high degree of correlation, an indicator of acknowledgement is transmitted to indicate that there is a high degree of correlation between the first and second re-encoded data packets. If there is a low degree of correlation, a determination is made that the previously transmitted indicator of acknowledgement was correctly received.
摘要:
The disclosed embodiments provide for methods and systems for selecting sectors for handoff in a communication system. According to one aspect, the method includes monitoring an indicia of transmit power on a plurality of RL control channels directed to a plurality of sectors, and selecting one of the sectors as a candidate for a RL handoff. The disclosed embodiments also provide for methods and systems for indicating a selected serving sector for handoff in a communication system. According to one aspect, the method includes sending a first signal to a first sector to indicate the first sector as a serving sector for a forward-link handoff, and sending a second signal to a second sector to indicate the second sector as a serving sector for a reverse-link handoff.
摘要:
Pilots are transmitted on demand on a reverse link and used for channel estimation and data transmission on a forward link. A base station selects at least one terminal for on-demand pilot transmission on the reverse link. Each selected terminal is a candidate for receiving data transmission on the forward link. The base station assigns each selected terminal with a time-frequency allocation, which may be for a wideband pilot, a narrowband pilot, or some other type of pilot. The base station receives and processes on-demand pilot transmission from each selected terminal and derives a channel estimate for the terminal based on the received pilot transmission. The base station may schedule terminals for data transmission on the forward link based on the channel estimates for all selected terminals. The base station may also process data (e.g., perform beamforming or eigensteering) for transmission to each scheduled terminal based on its channel estimate.
摘要:
Techniques for utilizing a capacity-based effective signal-to-noise ratio (SNR) to improve wireless communication are described herein. In an embodiment, a mobile terminal can determine the effective SNR from a forward link channel using pilot/data symbols. The mobile terminal can convey the effective SNR to a base station. In order to minimize transmission overhead, the mobile terminal can quantize the effective SNR prior to transmitting it to the base station. In another embodiment, the base station can determine the effective SNR from a reverse link. The base station can utilize the effective SNR to facilitate scheduling transmissions from the mobile terminal, transmitting power control commands to the mobile terminal, and determining a supporting data rate for the mobile terminal, for example. Suitable SNRs include constrained, unconstrained, average, and/or approximated effective SNRs. In addition, various filters, such as an averaging filter, can be utilized to further process the effective SNR.
摘要:
The disclosed embodiments provide for methods and systems for selecting sectors for handoff in a communication system. According to one aspect, the method includes monitoring an indicia of transmit power on a plurality of RL control channels directed to a plurality of sectors, and selecting one of the sectors as a candidate for a RL handoff. The disclosed embodiments also provide for methods and systems for indicating a selected serving sector for handoff in a communication system. According to one aspect, the method includes sending a first signal to a first sector to indicate the first sector as a serving sector for a forward-link handoff, and sending a second signal to a second sector to indicate the second sector as a serving sector for a reverse-link handoff.
摘要:
A closed-loop reverse-link power control algorithm for a frequency hopping orthogonal frequency division multiple access (FH-OFDMA) system is described. The power control algorithm adjusts the user's transmit power based on effective carrier-to-interference (C/I) and Received-Power-Over-Thermal (RpOT) measurements. The algorithm is inherently stable and is effective for FH-OFDMA systems with retransmissions.
摘要:
Techniques for performing erasure detection and power control for a transmission without error detection coding are described. For erasure detection, a transmitter transmits codewords via a wireless channel. A receiver computes a metric for each received codeword, compares the computed metric against an erasure threshold, and declares the received codeword to be “erased” or “non-erased”. The receiver dynamically adjusts the erasure threshold based on received known codewords to achieve a target level of performance. For power control, an inner loop adjusts the transmit power to maintain a received signal quality (SNR) at a target SNR. An outer loop adjusts the target SNR based on the status of received codewords (erased or non-erased) to achieve a target erasure rate. A third loop adjusts the erasure threshold based on the status of received known codewords (“good”, “bad”, or erased) to achieve a target conditional error rate.
摘要:
Techniques for adjusting transmit power to mitigate both intra-sector interference to a serving base station and inter-sector interference to neighbor base stations are described. The amount of inter-sector interference that a terminal may cause may be roughly estimated based on the total interference observed by each neighbor base station, channel gains for the serving and neighbor base stations, and the current transmit power level. The transmit power may be decreased if high interference is observed by a neighbor base station and increased otherwise. The transmit power may be adjusted by a larger amount and/or more frequently if the terminal is located closer to the neighbor base station observing high interference and/or if the current transmit power level is higher, and vice versa. The intra-sector interference is maintained within an acceptable level by limiting a received SNR for the terminal to be within a range of allowable SNRs.
摘要:
Pilots are transmitted on demand on a reverse link and used for channel estimation and data transmission on a forward link. A base station selects at least one terminal for on-demand pilot transmission on the reverse link. Each selected terminal is a candidate for receiving data transmission on the forward link. The base station assigns each selected terminal with a time-frequency allocation, which may be for a wideband pilot, a narrowband pilot, or some other type of pilot. The base station receives and processes on-demand pilot transmission from each selected terminal and derives a channel estimate for the terminal based on the received pilot transmission. The base station may schedule terminals for data transmission on the forward link based on the channel estimates for all selected terminals. The base station may also process data (e.g., perform beamforming or eigensteering) for transmission to each scheduled terminal based on its channel estimate.