Abstract:
A process for the preparation of a compound of formula (V): comprising at least the step of reacting a compound of formula (VI) with a compound (VII) wherein; R2 is hydrogen or a C1-C20 hydrocarbyl radical provided that at least one R2 is not hydrogen; R5 is hydrogen or a C1-20 hydrocarbyl group optionally containing one or more heteroatoms from groups 14-16; R6 is hydrogen or a C1-20 hydrocarbyl group optionally containing one or more heteroatoms from groups 14-16; n is 1, 2 or 3; each R8 is a C1-20 hydrocarbyl group; and Hal is a halide; in the presence of a nickel imidazolidin-2-ylidene compound.
Abstract:
A heterophasic propylene ethylene copolymer having an MFR2 of 0.5 to 100 g/10 m in and obtained using single site catalysis comprising: (i) a propylene homopolymer or propylene ethylene copolymer matrix having up to 4 wt % ethylene; and (ii) an ethylene propylene rubber (EPR) dispersed in the matrix; said heterophasic propylene ethylene copolymer having a xylene cold soluble content (XS) of 20 to 40%; wherein the ethylene content of the xylene cold soluble fraction of said heterophasic propylene ethylene copolymer is between 70 and 90 wt. %; wherein the xylene cold soluble fraction of said heterophasic propylene ethylene copolymer has an intrinsic viscosity (IV) of 3.0 dl/g or more; and wherein the melting enthalpy (ΔHM) of the heterophasic propylene ethylene copolymer is between 10 and 30 J/g at a temperature of 0 to 130° C.
Abstract:
C2C3 random copolymer composition with an improved balance between sealing initiation temperature (SIT) and melting point (Tm), i.e. low SIT and high melting point. In addition the inventive composition shows a broad sealing window, low hexane solubles and good optical properties, like low haze.
Abstract:
C2C3 random copolymer composition with an improved balance between sealing initiation temperature (SIT) and melting point (Tm), i.e. low SIT and high melting point. In addition the inventive composition shows a broad sealing window, low hexane solubles and good optical properties, like low haze.
Abstract:
Process for the preparation of a copolymer of propylene and a C4-12 a-olefin (PPC) having a melt flow rate MFR2 (230° C.) of below 3.0 g/10 mm, wherein the polymerization takes in the presence of a metallocene catalyst.
Abstract:
A process for the preparation of a propylene homopolymer in a multistage polymerisation process in the presence of a single site catalyst, said process comprising: (I) in a slurry polymerisation step, polymerising propylene in the presence of said single site catalyst; and subsequently (II) in a gas polymerisation step polymerising propylene in the presence of catalyst and polymer from step (I) so as to form a propylene homopolymer; wherein said catalyst comprises (i) a metallocene complex of a Group 4 metal, said metallocene comprising at least two cyclopentadienyl type ligands; (ii) a boron based cocatalyst; and (iii) an aluminoxane cocatalyst; said catalyst being in solid form, preferably in solid particulate form, and being free from an external carrier.
Abstract:
A ligand of formula (I′) wherein L is a divalent bridge selected from —R′2C—, —R′2C—CR′2—, —R′2Si—, —R′2Si—SiR′2—, —R′2Ge—, wherein each R′ is independently a hydrogen atom, C1-20-hydrocarbyl, tri(C1-20-alkyl)silyl, C6-20-aryl, C7-20-arylalkyl or C7-20-alkylaryl; R2 and R2′ are each independently a C1-20 hydrocarbyl radical; R5′ is a C1-20 hydrocarbyl group; R6, R6′, R7 and R7′ are each independently hydrogen or a C1-20 hydrocarbyl group; Ar and Ar′ are independently an aryl or heteroaryl group having up to 20 carbon atoms; each R1 is a C1-20 hydrocarbyl group or two R1 groups on adjacent carbon atoms taken together can form a fused 5 or 6 membered non aromatic ring with the Ar group; and each R4 is a C1-20 hydrocarbyl group; and the dotted lines represent a double bond present in between carbons 1 and 2 or 2 and 3 of the indenyl ring.
Abstract:
Catalyst system for producing ethylene copolymers in a high temperature solution process, the catalyst system comprising (i) a metallocene complex of formula (I), M is Hf or a mixture with Zr, provided that more than 50% by moles of the complex of Formula I has M=Hf, X is a sigma ligand, R are the same or different from each other and can be saturated linear or branched C1-C10 alkyl, C5-C10 aryl, C6-C20 alkylaryl or C6-C20 arylalkyl groups, which can optionally contain up to 2 heteroatoms or silicon atoms, R1 is a C6-C20-aryl, which can be unsubstituted or substituted by one or up to 5 linear or branched C1-C10 alkyl group(s), R2 is a saturated linear or cyclic C3-C20 alkyl group or a branched CR3R4R5 group, wherein R3 is hydrogen or an C1-C20 alkyl group and R4 and R5 are the same or are different and can be an C1-C20 alkyl group and (ii) a boron containing cocatalyst.
Abstract:
Catalyst system for producing ethylene copolymers in a high temperature solution process, the catalyst system comprising: (i) a metallocene complex of formula (I) wherein M is Hf or a mixture with Zr, provided that more than 50% by moles of the complex of Formula I has M=Hf; X is a sigma ligand; R are the same or different from each other and can be saturated linear or branched C1-C10 alkyl, C6-C10 aryl, C4-C10 heteroaryl, C6-C20 alkylaryl or C6-C20 arylalkyl groups, which can optionally contain up to 2 heteroatoms or silicon atoms; R1 is a C6-C10 aryl or C6-C20 alkylaryl group optionally containing up to 2 heteroatoms or silicon atoms or a C4-C10 heteroaryl group; R2 is a C4-C20 cycloalkyl group, optionally carrying alkyl substituents in beta-positions, of formula (II) in which R′ can be the same or can be different from each other and can be hydrogen or is defined as R and n is 1 to 17; and (ii) a boron containing cocatalyst.