Abstract:
A computer implemented method of matching a medical images of an anatomical structure of a patient's body with an atlas-based representation of the anatomical structure is described. The method includes acquiring patient image data; determining, based on the patient image data, patient substructure data; acquiring general substructure data; determining, for each of the patient substructures and based on the patient substructure data and the general substructure data, substructure matching data; determining, based on the general substructure data and the substructure matching data, anatomical structure atlas data; determining, based on the patient image data and the anatomical structure atlas data, matching transformation data describing an atlas-patient matching transformation between the medical image representation of the anatomical structure and the atlas representation of the anatomical structure.
Abstract:
A computer implemented method of matching a medical images of an anatomical structure of a patient's body with an atlas-based representation of the anatomical structure is described. The method includes acquiring patient image data describing a medical image representation of the anatomical structure in the medical image; determining, based on the patient image data, patient substructure data describing a plurality of patient substructure representations each describing a different patient substructure of the anatomical structure; acquiring general substructure data describing a general substructure representation of each of a plurality of general substructures for each of the patient substructures; determining, for each of the patient substructures and based on the patient substructure data and the general substructure data, substructure matching data describing a matching general substructure representation which matches the respective patient substructure representation; determining, based on the general substructure data and the substructure matching data, anatomical structure atlas data describing an atlas representation of the anatomical structure; determining, based on the patient image data and the anatomical structure atlas data, matching transformation data describing an atlas-patient matching transformation between the medical image representation of the anatomical structure and the atlas representation of the anatomical structure.
Abstract:
A medical data processing method of matching a medical image of an anatomical structure of a patient's body with an atlas-based representation of the anatomical structure, the method being constituted to be executed by a computer and comprising the following steps; acquiring patient image data describing a medical image representation of the anatomical structure in the medical image; determining, based on the patient image data, patient substructure data describing a plurality of patient substructure representations each describing a different patient substructure of the anatomical structure; acquiring general substructure data describing a general substructure representation of each of a plurality of general substructures for each of the patient substructures; determining, for each of the patient substructures and based on the patient substructure data and the general substructure data, substructure matching data describing a matching general substructure representation which matches the respective patient substructure representation; determining, based on the general substructure data and the substructure matching data, anatomical structure atlas data describing an atlas representation of the anatomical structure; determining, based on the patient image data and the anatomical structure atlas data, matching transformation data describing an atlas-patient matching transformation between the medical image representation of the anatomical structure and the atlas representation of the anatomical structure.
Abstract:
A matching transformation is determined for matching a patient image set of images of an anatomical body structure of a patient with an atlas image set of images of a general anatomical structure including anatomical atlas elements. Atlas spatial information containing spatial information on the general anatomical structure, and element representation information are obtained. The element representation information describes representation data sets which contain information on representations of the plurality of atlas elements in the atlas images to be determined are obtained, and also describes a determination rule for determining respective representation data sets for respective atlas elements in accordance with different respective parameter sets. Patient data is acquired by acquiring the patient image set and the parameter sets which are respectively associated with the images of the patient image set. The matching transformation is determined by matching images associated with the same parameter set to each other.
Abstract:
The present invention relates to a medical data processing method of transforming a representation of an anatomical structure of a patient in a first imaging modality into a representation of the anatomical structure in a second, other imaging modality, the method being constituted to be executed by a computer and comprising the following steps: acquiring first modality image data describing the first modality medical image containing the representation of the anatomical structure in the first imaging modality; acquiring atlas data describing a first modality atlas image describing a general structure of the anatomical structure in the first imaging modality, the atlas data containing information about the representation of the general structure in the second imaging modality; determining, based on the first modality image data and the atlas data, a first matching transformation between the first modality medical image and the first modality atlas image; determining, based on the first matching transformation and the first modality atlas image and the information about the representation of the general structure in the second imaging modality second modality, a second modality image representation of the first modality medical image.
Abstract:
A medical data processing method of determining a virtual image (2) of a part of a patient's body (4), the method being constituted to be executed by a computer and comprising the following steps: a) acquiring (S1) patient image data describing at least two two-dimensional patient images (1) of anatomical body parts (3) of the patient's body (4); b) acquiring (S2) atlas data describing a general structure (5) of at least part of the patient's body comprising correspondence parts corresponding to the anatomical body parts (3); c) acquiring correspondence part position data describing the positions of the correspondence parts in the general structure (5); determining (S4.1, S4.2, S4.3), based on the patient image data and the atlas data and the correspondence part position data, virtual image data describing a two-dimensional virtual image (2) of a part (21, 22) of the general structure (5) having a position in the general structure (5) which lies between the positions of the correspondence parts.
Abstract:
A data processing method for determining a matching transformation for matching a set of one or more images of an anatomical body structure of a patient, referred to as a patient image set, and a set of one or more images of a general anatomical structure, referred to as an atlas image set, wherein the general anatomical structure comprises a plurality of anatomical elements referred to as atlas elements, and each patient image is associated with one of a plurality of different parameter sets, wherein the parameter sets comprise one or more parameters which obtain when the patient images are generated, and the parameters influence representations of anatomical elements in the patient images, the method comprising the following steps performed by a computer: acquiring atlas data (S110, S120), comprising the steps of acquiring atlas spatial information (S110) which contains spatial information on the general anatomical structure, and acquiring element representation information (S120) which describes a plurality of representation data sets (Table 3) which contain information on representations of the plurality of atlas elements in the atlas images to be determined, wherein the element representation information also describes a determination rule (S124) for determining respective representation data sets for respective atlas elements in accordance with different respective parameter sets; acquiring patient data (S130), comprising the sub-steps of acquiring the patient image set (S131), and acquiring one or more of the plurality of parameter sets (S132) which are respectively associated with the one or more images of the patient image set determining (S140), on the basis of the atlas data and the patient data, the set of atlas images which respectively represent at least a part of the general anatomical structure by using (S141b) the spatial information on the general anatomical structure and particular representation data sets which are determined (S142) by applying the determination rule (S143) in accordance with the one or more associated parameter sets and particular atlas elements acquired (S141a) and referred to as corresponding elements, which are to be matched to corresponding anatomical elements represented in the patient image; determining (S150) the matching transformation (APT; APT1, APT2) which matches the atlas image set and the patient image set, by matching images associated with the same parameter set to each other.
Abstract:
A marker for a navigation system includes a reflective surface, and a light-absorbing, non-reflective or low-reflective object arranged at a defined distance from the reflective surface.