Abstract:
In some aspects, the disclosure is directed to methods and systems for transmitting packets (including but not limited to MU-MIMO packets). An access point communicating wirelessly with a plurality of devices can determine that a first packet for a first device of the plurality of devices has a first transmission duration. The access point can determine that a second packet for a second device of the plurality of devices has a second transmission duration shorter than the first transmission duration. The access point can adjust, based on the determination, a transmission power or a modulation and coding scheme to transmit the second packet during a third transmission duration. The third transmission duration can be greater than the second transmission duration.
Abstract:
A radio device receives a band-limited signal and estimates signal components beyond the band edges to extend the signal and eliminate the band-limited effects. The extended signal is transformed to the time domain to produce an estimate of the true time domain channel.
Abstract:
In a base station having a Massive Multiple Input Multiple Output (M-MIMO) antenna array, the availability of the M-MIMO antenna array is exploited to manage the interference caused by the base station to neighboring cells. In one embodiment, the large number of antenna elements of the M-MIMO antenna array are used to create precise transmit and/or receive spatial nulls at specific User Equipments (UEs) being served by a neighboring cell and/or in select areas of the neighboring cell. Depending on whether the spatial null is partial or full, transmissions by the base station may have reduced or even zero receive power within the neighboring cell.
Abstract:
In some aspects, the disclosure is directed to methods and systems for performing channel estimation between a beamformer and a beamformee. A beamformer can determine that a beamformee is configured to perform channel estimation for up to a pre-configured number of transmit spatial streams from the beamformer. The pre-configured number of transmit spatial streams can be less than a plurality of transmit spatial streams of the beamformer. The beamformer can determine a plurality of subsets of transmit spatial streams from the plurality of transmit spatial streams. The beamformer can send a plurality of sounding frames to the beamformee for channel estimation based at least on the determined plurality of subsets of transmit spatial streams.
Abstract:
A systems and method of channel estimation can be used in wireless environments. The systems and method can: (a) determine, by a transmitter, a number of receivers with which to communicate wirelessly, the number of receivers being at least one and corresponding to at least a first receiver; and (b) generate, by the transmitter, a frame to transmit to the first receiver, the frame generated based on a total number of receivers that is higher than the determined number of receivers.
Abstract:
A radio device receives a band-limited signal and estimates signal components beyond the band edges to extend the signal and eliminate the band-limited effects. The extended signal is transformed to the time domain to produce an estimate of the true time domain channel.
Abstract:
A wireless communication device is implemented to include a communication interface and a processor. The processor is configured to process communications associated with the other wireless communication devices within the wireless communication system to determine one or more traffic characteristics of those communications as well as one or more class characteristics of the other wireless communication devices. The processor is configured to classify the communications into one or more access categories based on the one or more traffic characteristics and is configured to classify the other devices into one or more device class categories based on the one or more class characteristics. The processor is then configured to generate one or more channel access control signals based on these classifications. The communication interface of the device is configured to transmit the one or more channel access control signals to one or more of the other devices.
Abstract:
Communications are supported between wireless communication devices using OFDMA signaling and duplicate processing. An OFDMA frame, which includes first data intended for a first recipient device and second data intended for a second recipient device, is transmitted via a first sub-channel, and a duplicate of the OFDMA frame is transmitted via a second sub-channel. In some instances, additional duplicates of the OFDMA frame are transmitted via additional sub-channels. The OFDMA frame may be generated based on a first frequency and then down-clocked to a second frequency that corresponds to a bandwidth of one of the sub-channels. A wireless communication device configured to perform such operations may be compliant with one or more IEEE 802.11 communication standards, protocols, and/or recommended practices and may also be backward compatible with prior versions of IEEE 802.11. Different numbers of sub-channels and sub-channels of different bandwidths may be used to different times.
Abstract:
A wireless communication device (alternatively, device) includes a processor configured to support communications with other wireless communication device(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processor, among other possible circuitries, components, elements, etc. to support communications with other device(s) and to generate and process signals for such communications. A device generates and transmits a resource and association poll frame (ra-poll frame) to other device(s). The contents of ra-poll frame direct which of the other device(s) is authorized to respond to the device (e.g., authorized device(s)) and the manner in which they are authorized to respond. Authorized device(s) transmit responses that may include association request(s) and/or a resource request(s), among other types of communications. The device then generates and transmits acknowledgement(s) (ACK(s)) indicates successful receipt of any responses from the authorized device(s).
Abstract:
A wireless communication device is configured to generate frames based on any of a number of different frame formats for transmission to one or more other recipient wireless communication devices. The frame may be implemented to include data intended for two or more recipient devices. The device encodes first data intended for a first recipient device using first one or more coding parameters and encodes second data intended for a second recipient device using second one or more coding parameters. The manner by which the first and second data have been encoded is indicated within one or more other fields within the frames based on the selected frame format. In one example, a single preamble specifies the first and second one or more coding parameters. In another example, an initial preamble and one or more respective sub-preambles specify the first and second one or more coding parameters.