Abstract:
A plural-channel audio signal (e.g., a stereo audio) is processed to modify a gain (e.g., a volume or loudness) of a speech component signal (e.g., dialogue spoken by actors in a movie) relative to an ambient component signal (e.g., reflected or reverberated sound) or other component signals. In one aspect, the speech component signal is identified and modified. In one aspect, the speech component signal is identified by assuming that the speech source (e.g., the actor currently speaking) is in the center of a stereo sound image of the plural-channel audio signal and by considering the spectral content of the speech component signal.
Abstract:
An apparatus for processing an audio signal and method thereof are disclosed, by which a local dynamic range of an audio signal can be adaptively normalized as well as a maximum dynamic range of the audio signal. The present invention includes receiving a signal, by an audio processing apparatus; computing a long-term power and a short-term power by estimating power of the signal; generating a slow gain based on the long-term power; generating a fast gain based on the short-term power; obtaining a final gain by combining the slow gain and the fast gain; and, modifying the signal using the final gain.
Abstract:
Generic and specific C-to-E binaural cue coding (BCC) schemes are described, including those in which one or more of the input channels are transmitted as unmodified channels that are not downmixed at the BCC encoder and not upmixed at the BCC decoder. The specific BCC schemes described include 5-to-2, 6-to-5, 7-to-5, 6.1-to-5.1, 7.1-to-5.1, and 6.2-to-5.1, where “0.1” indicates a single low-frequency effects (LFE) channel and “0.2” indicates two LFE channels.
Abstract:
Acoustic echo control and noise suppression is an important part of any “handsfree” telecommunication system, such as telephony or audio or video conferencing systems. Bandwidth and computational complexity constraints have prevented that stereo or multi-channel telecommunication systems have been widely applied. The advantages are very low complexity, high robustness, scalability to multi-channel audio without a need for loudspeaker signal distortion, and efficient integration of echo and noise control in the same algorithm. The proposed method for processing audio signals, comprises the steps of: —receiving an input signal, wherein the input signal is applied to a loudspeaker; —receiving a microphone signal generated by a microphone; —estimating the delay between the loudspeaker and the microphone signals and obtaining a delayed loudspeaker signal, —estimating a coloration correction values of the echo path on the delayed loudspeaker signal, —using information of the delayed loudspeaker signal, microphone signal, and coloration correction values to determine gain filter values, —apply the gain filter values to the microphone signal to remove the echo.
Abstract:
An apparatus for processing an audio signal and method thereof are disclosed, by which a local dynamic range of an audio signal can be adaptively normalized as well as a maximum dynamic range of the audio signal. The present invention includes receiving, by an audio processing apparatus, a signal, and feedback information estimated based on a normalizing gain; generating a noise estimation based on the signal; computing a gain filter for noise canceling, based on the noise estimation and the signal; and, obtaining a restricted gain filter by applying the feedback information to the gain filter.
Abstract:
In one embodiment, C input audio channels are encoded to generate E transmitted audio channel(s), where one or more cue codes are generated for two or more of the C input channels, and the C input channels are downmixed to generate the E transmitted channel(s), where C>E≧1. One or more of the C input channels and the E transmitted channel(s) are analyzed to generate a flag indicating whether or not a decoder of the E transmitted channel(s) should perform envelope shaping during decoding of the E transmitted channel(s). In one implementation, envelope shaping adjusts a temporal envelope of a decoded channel generated by the decoder to substantially match a temporal envelope of a corresponding transmitted channel.
Abstract:
Embodiments of the present invention are directed to a binaural cue coding (BCC) scheme in which an externally provided audio signal (e.g., a studio engineering audio signal) is transmitted, along with derived cue codes, to a receiver instead of an automatically downmixcd audio signal. The cue codes are (adaptively) synchronized with the externally provided audio signal to compensate for time lags (and changes in those time lags) between the externally downmixed audio signal and the multi-channel signal used to generate the cue codes. If the receiver is a legacy receiver, then the studio engineered audio signal will typically provide a higher-quality playback than would be provided by the automatically downmixed audio signal. If the receiver is a BCC-capable receiver, then the synchronization of the cue codes with the externally provided audio signal will typically improve the quality of the synthesized playback.
Abstract:
Surround sound recording is a tedious task requiring the use of many microphones. The invention aims at enabling the use of two-channel microphones (or stereo microphones) for multi-channel surround recording. A conventional stereo microphone, or a two-channel microphone specifically optimized for use with the proposed algorithm, is used to generate two signals. A post-processor is applied to the microphone generated signals to convert them to multi-channel surround.This aim is achieved through a method to generate multiple output audio channels (y1, . . . , yM) from two microphone generated audio channels (x1, x2), in which the number of output channels is equal or higher than two, this method comprising the steps of: determine directions of sound components related to the microphone characteristics determine compensation gains of sound components related to the microphone characteristics generating the output audio channels, y1, . . . , yM, by using the microphone generated audio channels, x1, x2, directions, and compensation gains
Abstract:
A plural-channel audio signal (e.g., a stereo audio) is processed to modify a gain (e.g., a volume or loudness) of a speech component signal (e.g., dialogue spoken by actors in a movie) relative to an ambient component signal (e.g., reflected or reverberated sound) or other component signals. In one aspect, the speech component signal is identified and modified. In one aspect, the speech component signal is identified by assuming that the speech source (e.g., the actor currently speaking) is in the center of a stereo sound image of the plural-channel audio signal and by considering the spectral content of the speech component signal.
Abstract:
The apparatus for constructing a multi-channel output signal using an input signal and parametric side information, the input signal including the first input channel and the second input channel derived from an original multi-channel signal, and the parametric side information describing interrelations between channels of the multi-channel original signal uses base channels for synthesizing first and second output channels on one side of an assumed listener position, which are different from each other. The base channels are different from each other because of a coherence measure. Coherence between the base channels (for example the left and the left surround reconstructed channel) is reduced by calculating a base channel for one of those channels by a combination of the input channels, the combination being determined by the coherence measure. Thus, a high subjective quality of the reconstruction can be obtained because of an approximated original front/back coherence.