-
公开(公告)号:US11423300B1
公开(公告)日:2022-08-23
申请号:US16271533
申请日:2019-02-08
Applicant: DeepMind Technologies Limited
Inventor: Samuel Ritter , Xiao Jing Wang , Siddhant Jayakumar , Razvan Pascanu , Charles Blundell , Matthew Botvinick
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating a system output using a remembered value of a neural network hidden state. In one aspect, a system comprises an external memory that maintains context experience tuples respectively comprising: (i) a key embedding of context data, and (ii) a value of a hidden state of a neural network at the respective previous time step. The neural network is configured to receive a system input and a remembered value of the hidden state of the neural network and to generate a system output. The system comprises a memory interface subsystem that is configured to determine a key embedding for current context data, determine a remembered value of the hidden state of the neural network based on the key embedding, and provide the remembered value of the hidden state as an input to the neural network.
-
公开(公告)号:US11388424B2
公开(公告)日:2022-07-12
申请号:US17137255
申请日:2020-12-29
Applicant: DeepMind Technologies Limited
Inventor: Nicholas Watters , Razvan Pascanu , Peter William Battaglia , Daniel Zorn , Theophane Guillaume Weber
IPC: H04N19/174 , H04N19/105 , H04N19/139 , H04N19/46 , H04N19/52 , H04N19/577 , H04N19/61
Abstract: A system implemented by one or more computers comprises a visual encoder component configured to receive as input data representing a sequence of image frames, in particular representing objects in a scene of the sequence, and to output a sequence of corresponding state codes, each state code comprising vectors, one for each of the objects. Each vector represents a respective position and velocity of its corresponding object. The system also comprises a dynamic predictor component configured to take as input a sequence of state codes, for example from the visual encoder, and predict a state code for a next unobserved frame. The system further comprises a state decoder component configured to convert the predicted state code, to a state, the state comprising a respective position and velocity vector for each object in the scene. This state may represent a predicted position and velocity vector for each of the objects.
-
公开(公告)号:US20210152835A1
公开(公告)日:2021-05-20
申请号:US17137255
申请日:2020-12-29
Applicant: DeepMind Technologies Limited
Inventor: Nicholas Watters , Razvan Pascanu , Peter William Battaglia , Daniel Zorn , Theophane Guillaume Weber
IPC: H04N19/174 , H04N19/105 , H04N19/139 , H04N19/46 , H04N19/52 , H04N19/577 , H04N19/61
Abstract: A system implemented by one or more computers comprises a visual encoder component configured to receive as input data representing a sequence of image frames, in particular representing objects in a scene of the sequence, and to output a sequence of corresponding state codes, each state code comprising vectors, one for each of the objects. Each vector represents a respective position and velocity of its corresponding object. The system also comprises a dynamic predictor component configured to take as input a sequence of state codes, for example from the visual encoder, and predict a state code for a next unobserved frame. The system further comprises a state decoder component configured to convert the predicted state code, to a state, the state comprising a respective position and velocity vector for each object in the scene. This state may represent a predicted position and velocity vector for each of the objects.
-
公开(公告)号:US10949734B2
公开(公告)日:2021-03-16
申请号:US15396319
申请日:2016-12-30
Applicant: DeepMind Technologies Limited
Inventor: Neil Charles Rabinowitz , Guillaume Desjardins , Andrei-Alexandru Rusu , Koray Kavukcuoglu , Raia Thais Hadsell , Razvan Pascanu , James Kirkpatrick , Hubert Josef Soyer
Abstract: Methods and systems for performing a sequence of machine learning tasks. One system includes a sequence of deep neural networks (DNNs), including: a first DNN corresponding to a first machine learning task, wherein the first DNN comprises a first plurality of indexed layers, and each layer in the first plurality of indexed layers is configured to receive a respective layer input and process the layer input to generate a respective layer output; and one or more subsequent DNNs corresponding to one or more respective machine learning tasks, wherein each subsequent DNN comprises a respective plurality of indexed layers, and each layer in a respective plurality of indexed layers with index greater than one receives input from a preceding layer of the respective subsequent DNN, and one or more preceding layers of respective preceding DNNs, wherein a preceding layer is a layer whose index is one less than the current index.
-
公开(公告)号:US20210073594A1
公开(公告)日:2021-03-11
申请号:US17019919
申请日:2020-09-14
Applicant: DeepMind Technologies Limited
Inventor: Daniel Pieter Wierstra , Yujia Li , Razvan Pascanu , Peter William Battaglia , Theophane Guillaume Weber , Lars Buesing , David Paul Reichert , Arthur Clement Guez , Danilo Jimenez Rezende , Adrià Puigdomènech Badia , Oriol Vinyals , Nicolas Manfred Otto Heess , Sebastien Henri Andre Racaniere
Abstract: A neural network system is proposed. The neural network can be trained by model-based reinforcement learning to select actions to be performed by an agent interacting with an environment, to perform a task in an attempt to achieve a specified result. The system may comprise at least one imagination core which receives a current observation characterizing a current state of the environment, and optionally historical observations, and which includes a model of the environment. The imagination core may be configured to output trajectory data in response to the current observation, and/or historical observations. The trajectory data comprising a sequence of future features of the environment imagined by the imagination core. The system may also include a rollout encoder to encode the features, and an output stage to receive data derived from the rollout embedding and to output action policy data for identifying an action based on the current observation.
-
公开(公告)号:US10860895B2
公开(公告)日:2020-12-08
申请号:US16689017
申请日:2019-11-19
Applicant: DeepMind Technologies Limited
Inventor: Daniel Pieter Wierstra , Yujia Li , Razvan Pascanu , Peter William Battaglia , Theophane Guillaume Weber , Lars Buesing , David Paul Reichert , Oriol Vinyals , Nicolas Manfred Otto Heess , Sebastien Henri Andre Racaniere
Abstract: A neural network system is proposed to select actions to be performed by an agent interacting with an environment to perform a task in an attempt to achieve a specified result. The system may include a controller to receive state data and context data, and to output action data. The system may also include an imagination module to receive the state and action data, and to output consequent state data. The system may also include a manager to receive the state data and the context data, and to output route data which defines whether the system is to execute an action or to imagine. The system may also include a memory to store the context data.
-
公开(公告)号:US10776670B2
公开(公告)日:2020-09-15
申请号:US16689058
申请日:2019-11-19
Applicant: DeepMind Technologies Limited
Inventor: Daniel Pieter Wierstra , Yujia Li , Razvan Pascanu , Peter William Battaglia , Theophane Guillaume Weber , Lars Buesing , David Paul Reichert , Arthur Clement Guez , Danilo Jimenez Rezende , Adrià Puigdomènech Badia , Oriol Vinyals , Nicolas Manfred Otto Heess , Sebastien Henri Andre Racaniere
Abstract: A neural network system is proposed. The neural network can be trained by model-based reinforcement learning to select actions to be performed by an agent interacting with an environment, to perform a task in an attempt to achieve a specified result. The system may comprise at least one imagination core which receives a current observation characterizing a current state of the environment, and optionally historical observations, and which includes a model of the environment. The imagination core may be configured to output trajectory data in response to the current observation, and/or historical observations. The trajectory data comprising a sequence of future features of the environment imagined by the imagination core. The system may also include a rollout encoder to encode the features, and an output stage to receive data derived from the rollout embedding and to output action policy data for identifying an action based on the current observation.
-
38.
公开(公告)号:US20200285940A1
公开(公告)日:2020-09-10
申请号:US16759561
申请日:2018-10-29
Applicant: DeepMind Technologies Limited
Inventor: Pablo Sprechmann , Siddhant Jayakumar , Jack William Rae , Alexander Pritzel , Adrià Puigdomènech Badia , Oriol Vinyals , Razvan Pascanu , Charles Blundell
Abstract: There is described herein a computer-implemented method of processing an input data item. The method comprises processing the input data item using a parametric model to generate output data, wherein the parametric model comprises a first sub-model and a second sub-model. The processing comprises processing, by the first sub-model, the input data to generate a query data item, retrieving, from a memory storing data point-value pairs, at least one data point-value pair based upon the query data item and modifying weights of the second sub-model based upon the retrieved at least one data point-value pair. The output data is then generated based upon the modified second sub-model.
-
公开(公告)号:US10762421B2
公开(公告)日:2020-09-01
申请号:US15174020
申请日:2016-06-06
Applicant: DeepMind Technologies Limited
Inventor: Guillaume Desjardins , Karen Simonyan , Koray Kavukcuoglu , Razvan Pascanu
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing inputs using a neural network system that includes a whitened neural network layer. One of the methods includes receiving an input activation generated by a layer before the whitened neural network layer in the sequence; processing the received activation in accordance with a set of whitening parameters to generate a whitened activation; processing the whitened activation in accordance with a set of layer parameters to generate an output activation; and providing the output activation as input to a neural network layer after the whitened neural network layer in the sequence.
-
公开(公告)号:US20200223063A1
公开(公告)日:2020-07-16
申请号:US16829237
申请日:2020-03-25
Applicant: DeepMind Technologies Limited
Inventor: Razvan Pascanu , Raia Thais Hadsell , Mel Vecerik , Thomas Rothoerl , Andrei-Alexandru Rusu , Nicolas Manfred Otto Heess
Abstract: A system includes a neural network system implemented by one or more computers. The neural network system is configured to receive an observation characterizing a current state of a real-world environment being interacted with by a robotic agent to perform a robotic task and to process the observation to generate a policy output that defines an action to be performed by the robotic agent in response to the observation. The neural network system includes: (i) a sequence of deep neural networks (DNNs), in which the sequence of DNNs includes a simulation-trained DNN that has been trained on interactions of a simulated version of the robotic agent with a simulated version of the real-world environment to perform a simulated version of the robotic task, and (ii) a first robot-trained DNN that is configured to receive the observation and to process the observation to generate the policy output.
-
-
-
-
-
-
-
-
-