Abstract:
The present invention relates to a method of sensing a fingerprint pattern of a finger using a fingerprint sensing device. The method comprising: controlling a group of sensing elements to change a potential of a group of sensing structures comprised in said group of sensing elements; acquiring, in response to said variation in potential, a response signal from a finger detecting circuitry indicative of the capacitive coupling between the group of sensing structures and the finger detecting structure; comparing a variation in the response signal with a predefined threshold value; and providing a signal indicating that a finger is present when the variation in response signal is greater than the threshold value. The invention also relates to a corresponding fingerprint sensing device.
Abstract:
A capacitive fingerprint sensing device and method therein for noise detection are disclosed. The capacitive fingerprint sensing device comprises a plurality of sensing elements, each comprising a sensing structure and configured to sense a capacitive coupling between the sensing structure and a finger. The fingerprint sensing device further comprises sensing circuitry and timing circuitry configured to control a timing of a drive signal. The fingerprint sensing device is controllable to operate in a noise-detection mode and in a fingerprint mode. In the noise-detection mode, the fingerprint sensing device is configured to control the timing circuitry such that no drive signal is provided. The fingerprint sensing device senses a capacitive coupling between the finger and at least one sensing structure and provides a sensing signal indicative of the capacitive coupling between the finger and the sensing structures by means of said sensing circuitry.
Abstract:
The present invention relates to a fingerprint sensing device comprising an array of sensing elements; readout circuitry connected to the array of sensing elements; and finger detecting circuitry for detecting if a finger candidate is touching the sensing surface of the fingerprint sensing device. The fingerprint sensing device is controllable between an active state and an inactive state. When the fingerprint sensing device is in the inactive state, the finger detecting circuitry is configured to provide a finger lost signal for indicating when the finger candidate no longer touches the sensing surface of the fingerprint sensing device.
Abstract:
A method of authenticating a candidate fingerprint by means of an electronic device comprising a touch sensor; and a fingerprint sensor. The method comprises the steps of: acquiring at least one touch sensor signal indicative of a sub-area of the touch sensor being touched by the candidate finger; acquiring at least one fingerprint image of the candidate fingerprint; retrieving a stored enrollment representation of the enrolled fingerprint of the enrolled finger; determining an authentication representation of the candidate fingerprint based on the fingerprint image; and determining an authentication result based on the authentication representation, the stored enrollment representation, and the at least one touch sensor signal.
Abstract:
The present invention relates to a method of sensing a fingerprint pattern of a finger using a fingerprint sensing device comprising an array of sensing elements; an electrically conductive finger detecting structure; and finger detecting circuitry connected to the finger detecting structure for providing a finger detection signal indicative of a capacitive coupling between the finger detecting structure and the finger. The method comprises the steps of: comparing the finger detection signal with a first threshold value indicating a first capacitive coupling, and a second threshold value indicating a second capacitive coupling stronger than the first capacitive coupling; and activating at least a subset of the sensing elements when the finger detection signal changes from a first value indicating a capacitive coupling weaker than the first capacitive coupling to a second value indicating a capacitive coupling stronger than the second capacitive coupling.
Abstract:
The present invention relates to an electronic device comprising a fingerprint sensing system including a plurality of sensing elements, each being configured to capacitively couple to a finger arranged adjacent to the sensing element and to provide a sensing signal indicative of a response to a time-varying finger excitation signal provided to the finger; and an electrically conducting housing at least partly enclosing an interior of the electronic device. The electronic device further comprises housing connection circuitry connected to the electrically conducting housing, and arranged and configured to at least intermittently allow a potential of the electrically conducting housing to follow the finger excitation signal. Hereby the housing can be used to enhance the functionality of the fingerprint sensing system.
Abstract:
A fingerprint-based navigation method using a finger navigation system comprising fingerprint sensing circuitry and navigation control circuitry. The method comprises the steps of: acquiring a series of navigation sequences of fingerprint images, and for each navigation sequence in the series of navigation sequences: determining an estimated momentary finger movement based on the navigation sequence of fingerprint images; determining at least one fingerprint image parameter value indicative of a fingerprint image status based on at least one fingerprint image in the navigation sequence of fingerprint images; and evaluating the fingerprint image status. The method further comprises the steps of determining a fingerprint sensing circuitry setting based on the evaluation; and providing the fingerprint sensing circuitry setting to the fingerprint sensing circuitry only during a time period between acquisition of a final fingerprint image in one navigation sequence and acquisition of a first fingerprint image in another, directly succeeding, navigation sequence.
Abstract:
A method of determining a representation of a fingerprint pattern of a finger using a fingerprint sensor comprising a two-dimensional measuring arrangement including a plurality of measuring elements, each comprising a finger electrode spaced apart from the finger by a dielectric structure. For each measurement position, the method comprises the steps of: providing a first measuring element configuration with an elongated first measuring arrangement portion having a first principal direction of extension; and a first peripheral measuring arrangement portion; acquiring a first measurement value for the measurement position; providing a second measuring element configuration having an elongated second measuring arrangement portion having a second principal direction of extension; and a second peripheral measuring arrangement portion; and acquiring a second measurement value for the measurement position. The representation of the fingerprint pattern is determined based on the first measurement value and the second measurement value for each of the measurement positions.
Abstract:
The invention relates to a method of authenticating a user by means of a fingerprint authentication system comprising a fingerprint sensing arrangement and authentication circuitry. The method comprises the steps of acquiring a first candidate fingerprint image; acquiring a second candidate fingerprint image; processing, while acquiring the second candidate fingerprint image, the first candidate fingerprint image by the authentication circuitry; and evaluating a result of the processing. When the evaluation indicates that successful authentication is not likely based on the first candidate fingerprint image, the user is authenticated based on the second candidate fingerprint image.
Abstract:
A capacitive fingerprint sensing device and method therein for noise detection are disclosed. The capacitive fingerprint sensing device comprises a plurality of sensing elements, each comprising a sensing structure and configured to sense a capacitive coupling between the sensing structure and a finger. The fingerprint sensing device further comprises sensing circuitry and timing circuitry configured to control a timing of a drive signal. The fingerprint sensing device is controllable to operate in a noise-detection mode and in a fingerprint mode. In the noise-detection mode, the fingerprint sensing device is configured to control the timing circuitry such that no drive signal is provided. The fingerprint sensing device senses a capacitive coupling between the finger and at least one sensing structure and provides a sensing signal indicative of the capacitive coupling between the finger and the sensing structures by means of said sensing circuitry.