Abstract:
The present invention generally relates to a method for transitioning a device controller comprised with an electronic device from an at least partly inactive mode to an at least partly active mode, the electronic device further comprising a pre-processing module and a fingerprint sensor configured to acquire image data. The invention also relates to a corresponding electronic device and to a computer program product.
Abstract:
The present invention generally relates to a method forming a fingerprint image using a fingerprint sensing system, and specifically the formation of an improved fingerprint image by combining fingerprint image data from a plurality of subsequently acquired images of a finger. The invention also relates to a corresponding fingerprint sensing system and to a computer program product.
Abstract:
The present invention relates to a method of estimating a finger movement direction of a finger, comprising the steps of: a) acquiring a reference fingerprint image; b) acquiring at least one candidate fingerprint image at each acquisition time in a time sequence of acquisition times; c) determining, for each of the acquisition times, a match parameter value for each of a plurality of candidate finger movement directions, the match parameter value being indicative of a correlation between a reference fingerprint image portion and a candidate fingerprint image portion corresponding to displacement in the candidate finger movement direction; d) determining, for each of the candidate finger movement directions, a local extremum match parameter value indicating a maximum correlation for the time sequence of acquisition times; and e) estimating the finger movement based on an evaluation of the determined local extremum match parameters.
Abstract:
A capacitive fingerprint sensing device and method therein for noise detection are disclosed. The fingerprint sensing device comprises a plurality of sensing elements, each having a sensing structure and configured to sense a capacitive coupling between the sensing structure and a finger. The fingerprint sensing device further comprises sensing circuitry configured to provide a sensing signal indicative of the capacitive coupling between the finger and the sensing structures and timing circuitry configured to control a timing of a drive signal. The fingerprint sensing device is controllable to operate in a noise-detection mode and in a fingerprint mode. When in the noise-detection mode, the fingerprint sensing device is configured to control the timing circuitry such that a drive signal is provided. The fingerprint sensing device repeatedly senses a capacitive coupling between the finger and at least one sensing structure and provides a time-dependent sensing signal by means of said sensing circuitry.
Abstract:
An apparatus and a computer-implemented method of acquiring a fingerprint image from a fingerprint sensor with an array of sensor elements spanning a sensing area, comprising: monitoring groups of sensor elements located at group-wise spaced apart positions in the array of sensor elements, to determine a touch event occurring on the array of sensor elements; from the array of sensor elements, acquiring, at respective points in time, fingerprint sub-images which are confined in size to a subarea of the sensing area; as the fingerprint sub-images are acquired, computing values of a statistical indicator for the fingerprint sub-images; and acquiring a full fingerprint image when a predefined criterion indicates that the values of the statistical indicator has reached or is about to reach a stable state.
Abstract:
The present invention generally relates to a method for forming a fingerprint using a fingerprint sensing system, and specifically to the possibility of allowing the formation of a fingerprint when only separated portions of the fingerprint is available. The invention also relates to the corresponding fingerprint sensing system and to a computer program product.
Abstract:
A method of authenticating a candidate fingerprint by means of an electronic device comprising a touch sensor; and a fingerprint sensor. The method comprises the steps of: acquiring at least one touch sensor signal indicative of a sub-area of the touch sensor being touched by the candidate finger; acquiring at least one fingerprint image of the candidate fingerprint; retrieving a stored enrollment representation of the enrolled fingerprint of the enrolled finger; determining an authentication representation of the candidate fingerprint based on the fingerprint image; and determining an authentication result based on the authentication representation, the stored enrollment representation, and the at least one touch sensor signal.
Abstract:
A fingerprint sensor comprising a plurality of electrically conductive sensing structures arranged in a sensing plane for capacitively sensing a fingerprint of a finger; and measurement circuitry coupled to the plurality of electrically conductive sensing structures for providing measurement signals indicative of a capacitive coupling between each sensing structure in the plurality of electrically conductive sensing structures and the finger, wherein the measurement circuitry is arranged to: provide, using a first measurement circuitry configuration, a first set of measurement signals from a first set of sensing structures; and provide, using a second measurement circuitry configuration different from the first measurement circuitry configuration, a second set of measurement signals from a second set of sensing structures.
Abstract:
The present invention generally relates to a method for forming a fingerprint using a fingerprint sensing system, and specifically to the possibility of allowing the formation of a fingerprint when only separated portions of the fingerprint is available. The invention also relates to the corresponding fingerprint sensing system and to a computer program product.
Abstract:
A method of determining a physical property of a finger using a sensor comprising a two-dimensional measuring arrangement including a plurality of measuring elements, each defining a measuring element position in the measuring arrangement, and each comprising a finger electrode spaced apart from the finger by a dielectric structure. For each measuring element position, the method comprises the steps of performing a first sensing operation using a first capacitive configuration, acquiring a first measurement value for the first capacitive configuration, performing a second sensing operation using a second capacitive configuration, acquiring a second measurement value for the second capacitive configuration. The physical property of the finger is determined based on the first and second measurement values for each measuring element position.