SHROUD HANGER ASSEMBLY
    31.
    发明公开

    公开(公告)号:US20230265769A1

    公开(公告)日:2023-08-24

    申请号:US18308806

    申请日:2023-04-28

    Abstract: A shroud hanger assembly (30) or shroud assembly is provided for dimensionally incompatible components wherein the assembly includes a multi-piece hanger (32), for example having a forward hanger portion (34) and a rearward hanger portion (36). A cavity (46) is formed between the parts; wherein a shroud (50) may be positioned which is formed of a low coefficient of thermal expansion material. The hanger (32) and shroud (50) may be formed of the same material or differing materials in order to better match the thermal growth between the hanger and the shroud. When the shroud (50) is positioned within the hanger opening or cavity (46), one of the forward (34) and rearward hanger (36) portions may be press fit or otherwise connected into the other of the forward (34) and rearward (36) hanger portion.

    Methods and assemblies for attaching airfoils within a flow path

    公开(公告)号:US11286799B2

    公开(公告)日:2022-03-29

    申请号:US16377398

    申请日:2019-04-08

    Abstract: Flow path assemblies for gas turbine engines are provided. For example, a flow path assembly comprises an inner wall; a unitary outer wall; and a plurality of nozzle airfoils having an inner end radially opposite an outer end. The unitary outer wall defines a plurality of outer pockets each configured for receipt of the outer end of one of the nozzle airfoils, and the inner wall includes defines a plurality of inner pockets each configured for receipt of the inner end of one of the plurality of nozzle airfoils. A portion of each inner pocket is defined by a forward inner wall segment and an aft inner wall segment. In another embodiment, a flow path assembly comprises an inner wall defining a plurality of bayonet slots that each receive a bayonet included with each of a plurality of nozzle airfoils that are integral with a unitary outer wall.

    Shroud hanger assembly
    35.
    发明授权

    公开(公告)号:US10400619B2

    公开(公告)日:2019-09-03

    申请号:US15318114

    申请日:2015-05-05

    Abstract: A shroud hanger assembly or shroud assembly is provided for a gas turbine engine wherein a hanger includes a radially depending and axially extending arm. The arm or retainer engages a pocket formed in a shroud so as to retain the shroud in a desired position relative to the hanger. An aft retaining structure is provided on the hanger and provides a seat for a seal structure which biases the retainer so that the arm of the hanger maintains engagement in the shroud pocket. A baffle may be utilized at the hanger to cool at least some portion of the shroud.

    Methods and features for positioning a flow path inner boundary within a flow path assembly

    公开(公告)号:US10247019B2

    公开(公告)日:2019-04-02

    申请号:US15440235

    申请日:2017-02-23

    Abstract: Flow path assemblies and methods for assembling a flow path assembly of a gas turbine engine are provided. For example, a flow path assembly comprises a unitary outer wall including combustor and turbine portions that are integrally formed as a single unitary structure; a single piece, generally annular inner band; and a plurality of nozzle airfoils extending from the unitary outer wall to the inner band. Each nozzle airfoil interfaces with the inner band to position the inner band within the assembly. An exemplary assembly method comprises inserting an inner band into a flow path having a unitary outer wall as its outer boundary; inserting a plurality of nozzle airfoils into the flow path; and securing the nozzle airfoils with respect to the unitary outer wall. The inner band interfaces with an inner end of each nozzle airfoil to radially locate the inner band within the flow path.

    System and method for supporting a turbine shroud

    公开(公告)号:US10132186B2

    公开(公告)日:2018-11-20

    申请号:US14825201

    申请日:2015-08-13

    Abstract: In one aspect the present subject matter is directed to a system for supporting a turbine shroud. The system includes a shroud support at least partially defining a first piston sleeve and a piston assembly having a first piston head disposed within the first piston sleeve and a second piston head coupled to the first piston head. The first piston head is slideably engaged with an inner surface of the first piston sleeve. The second piston head is slideably engaged with an inner surface of a second piston sleeve. The system also includes a turbine shroud that is fixedly connected to the piston assembly and that extends radially inwardly from the shroud support. The piston assembly provides for radially inward and radially outward movement of the turbine shroud in response to a change in a radial force applied to a hot side surface of the turbine shroud.

    Methods and Assemblies for Attaching Airfoils within a Flow Path

    公开(公告)号:US20180238185A1

    公开(公告)日:2018-08-23

    申请号:US15440294

    申请日:2017-02-23

    Abstract: Flow path assemblies for gas turbine engines are provided. For example, a flow path assembly comprises an inner wall; a unitary outer wall; and a plurality of nozzle airfoils having an inner end radially opposite an outer end. The unitary outer wall defines a plurality of outer pockets each configured for receipt of the outer end of one of the nozzle airfoils, and the inner wall includes defines a plurality of inner pockets each configured for receipt of the inner end of one of the plurality of nozzle airfoils. A portion of each inner pocket is defined by a forward inner wall segment and an aft inner wall segment. In another embodiment, a flow path assembly comprises an inner wall defining a plurality of bayonet slots that each receive a bayonet included with each of a plurality of nozzle airfoils that are integral with a unitary outer wall.

Patent Agency Ranking