Abstract:
Power delivery systems and methods described herein conductively couple several input lines with a cable that conducts a multi-phase electric current. The input lines separately conduct different phases of the electric current. Output lines are conductively coupled with plural machines, and separately conduct the different phases of the electric current. Plural switching devices are conductively coupled with the input lines and with the output lines, and are used to control the switching devices in order to conduct the different phases of the electric current to the machines. A first set of the switching devices is closed to separately conduct the different phases of the electric current to a first machine of the machines. A different, second set of the switching devices is separately closed to separately conduct the different phases of the electric current to a different, second machine of the machines.
Abstract:
A submersible pumping assembly for a deviated wellbore is disclosed. The pump assembly including one or more electric submersible pumps disposed in a casing. The casing being disposed in a below ground deviated wellbore. The assembly including one or more electric motors disposed in the casing and configured to operate the one or more electric submersible pumps. The assembly further including one or more flexible joints. The one or more flexible joints are configured to linearly couple the one or more electric submersible pumps and the one or more electric motors and impart flexibility to the assembly in the deviated wellbore. Also provided is a submersible assembly for pumping a fluid.
Abstract:
A permanent magnet machine, a rotor assembly for the machine, and a pump assembly. The permanent magnet machine includes a stator assembly including a stator core configured to generate a magnetic field and extending along a longitudinal axis with an inner surface defining a cavity and a rotor assembly including a rotor core and a rotor shaft. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further including a plurality of permanent magnets for generating a magnetic field which interacts with the stator magnetic field to produce torque. The permanent magnets configured as one of internal or surface mounted. The rotor assembly also including a plurality of retaining clips configured to retain the plurality of permanent magnets relative to the rotor core. The pump assembly including an electric submersible pump and a permanent magnet motor for driving the pump.
Abstract:
A pump for pumping a multiphase fluid includes a housing and a rotor with an outer surface. A plurality of inducer vanes are attached to the rotor hub, each having a leading edge and a trailing edge where the leading edge of one inducer vane overlaps the trailing edge of an adjacent inducer vane by a first overlap angle. A plurality of impeller vanes are also attached to the hub. The impeller vanes each have a leading edge and a trailing edge where the leading edge of one impeller vane overlaps the trailing edge of an adjacent impeller vane by a second overlap angle larger than the first overlap angle. The pump includes a rotor flow channel extending between the hub outer surface and the housing inner surface. The rotor flow channel has an inlet area and an outlet area, whereby the outlet area is smaller than the inlet area.
Abstract:
A pumping system for use in moving a fluid present within a wellbore is provided. The pumping system includes an electric linear motor having a motor housing and a stator coupled to the motor housing. The stator includes a track having a primary magnet assembly. A motor shaft is electrically coupled to the stator and includes a body having a secondary magnet assembly. The pumping system includes a pump coupled to the electric linear motor, which includes a pump housing coupled to the motor housing and a pump piston coupled to the motor shaft. The pump piston is configured to reciprocate within the pump housing between a second position and a first position. A seal is coupled to the motor housing and the motor housing and configured to direct the fluid into the pump housing when the pump piston is in the first position and to direct the fluid out of the pump housing when the pump piston is in the second position.
Abstract:
A counter rotating helico-axial pump is provided, the pump comprising: (a) an inner rotor comprising a plurality of outwardly extending helico-axial impeller vanes; (b) a hollow outer rotor comprising a plurality of inwardly extending helico-axial impeller vanes; (c) a single driving device configured to drive the inner rotor or the hollow outer rotor; and (d) a force transmission coupling joining the inner rotor and the hollow outer rotor and configured to permit rotation of the inner rotor and hollow outer rotor in opposite directions; wherein at least a portion of the inner rotor is disposed within the hollow outer rotor, and wherein the inner rotor, the hollow outer rotor and the helico-axial impeller vanes define a fluid flow path, and wherein the inner rotor and hollow outer rotor are configured such that at least some of adjacent helico-axial impeller vanes are configured to rotate in opposite directions.
Abstract:
A pump for pumping a multiphase fluid includes a housing and a rotor with an outer surface. A plurality of inducer vanes are attached to the rotor hub, each having a leading edge and a trailing edge where the leading edge of one inducer vane overlaps the trailing edge of an adjacent inducer vane by a first overlap angle. A plurality of impeller vanes are also attached to the hub. The impeller vanes each have a leading edge and a trailing edge where the leading edge of one impeller vane overlaps the trailing edge of an adjacent impeller vane by a second overlap angle larger than the first overlap angle. The pump includes a rotor flow channel extending between the hub outer surface and the housing inner surface. The rotor flow channel has an inlet area and an outlet area, whereby the outlet area is smaller than the inlet area.