Abstract:
Methods and apparatuses are provided for constructing a punctured polar code in the encoding and decoding field to improve decoding performance of a punctured polar code and reduce a frame error rate of the punctured polar code. The method is as follows: comparing a phase sequence number of a current bit channel with a period index of a puncturing pattern to obtain a comparison result; obtaining a transition probability of the bit channel according to the comparison result and bit parity conditions of a sequence number of the bit channel in each phase; obtaining a reliability value of each bit channel according to the transition probability; and determining an information bit index set according to the reliability values.
Abstract:
A method for performing polar coding is disclosed in the application. A data block is segmented into a plurality of first blocks. Difference in bit length between any two first blocks is not more than one bit. For each first block, one or more consecutive padding bits is added to obtain a second block of a bit length K if the bit length of the first block is less than K, so as to obtain a plurality of second blocks corresponding to the first blocks. N−K consecutive bits are added to each of the second blocks to obtain a plurality of third blocks. Polar encoding is performed on the third blocks.
Abstract:
Embodiments of the present invention provide an encoding or decoding method and apparatus. The method includes: extracting first information in a bitstream; determining a chroma component intra prediction mode according to the first information; when the chroma component intra prediction mode cannot be determined according to the first information, extracting second information in the bitstream; and determining the chroma component intra prediction mode according to the second information, where the first information includes information for indicating whether the chroma component intra prediction mode is a DM mode or an LM mode, the second information is used to indicate a remaining mode as the chroma component intra prediction mode, and the remaining mode is one of available chroma component intra prediction modes other than a mode that may be determined according to the first information.
Abstract:
A method includes: selecting, from M polar codes of a same code length and code rate, a polar code corresponding to an actual code rate for a first transmission, and encoding an information bit sequence by using the polar code to obtain encoded bits; and performing rate matching on the encoded bits to generate to-be-sent bits. Different from a traditional HARQ using one polar code, in this embodiment, a polar code corresponding to the actual code rate for the first transmission is selected from the M polar codes during the initial transmission, so that a different polar code can be selected adaptively according to the actual code rate for the first transmission.
Abstract:
A routing loop determining method and a device. The method includes: acquiring, by a forwarding device in a layer 3 network, a first packet, where a time to live (TTL) value of the first packet is reduced to 0 by the forwarding device; acquiring, by the forwarding device, a second packet whose destination Internet Protocol IP address is the same as that of the first packet; recording, by the forwarding device, a feature of the second packet; forwarding, by the forwarding device, the second packet; and acquiring, by the forwarding device, a third packet according to the feature of the second packet, where a feature of the third packet is the same as that of the second packet, and determining that a routing loop exists. The present disclosure resolves a problem that a loop in a layer 3 network cannot be detected, and improves accuracy of sending a packet.
Abstract:
Embodiments of the present invention provide an encoding or decoding method and apparatus. The method includes: extracting first information in a bitstream; determining a chroma component intra prediction mode according to the first information; when the chroma component intra prediction mode cannot be determined according to the first information, extracting second information in the bitstream; and determining the chroma component intra prediction mode according to the second information, where the first information includes information for indicating whether the chroma component intra prediction mode is a DM mode or an LM mode, the second information is used to indicate a remaining mode as the chroma component intra prediction mode, and the remaining mode is one of available chroma component intra prediction modes other than a mode that may be determined according to the first information.
Abstract:
Embodiments of the present invention provide a method and a device for decoding Polar codes. A reliable subset is extracted from an information bit set of the Polar codes, where reliability of information bits in the reliable subset is higher than reliability of other information bits. The method includes: obtaining a probability value or an LLR of a current decoding bit of the Polar codes; when the current decoding bit belongs to the reliable subset, performing judgment according to the probability value or the LLR of the current decoding bit to determine a decoding value of the current decoding bit, keeping the number of decoding paths of the Polar codes unchanged, and modifying probability values of all the decoding paths by using the probability value or the LLR of the current decoding bit.
Abstract:
Embodiments of this application disclose a data processing method, an apparatus, and a device. The data processing method may be performed by a first communication device, and the first communication device is a transmit end of encoded data. During each time of transmission, the first communication device places information bits into code blocks according to a specified order.
Abstract:
A method and an apparatus for encoding a polar code concatenated with a cyclic redundancy check (CRC), where M bits are selected from K bits in the sequence to perform CRC encoding. The M bits are determined based on reliability of K polarized subchannels on which the K bits are placed and/or row weights of K rows, in a first matrix, corresponding to the K polarized subchannels on which the K bits are placed. The first matrix is an encoding matrix of polar encoding. Polar encoding is performed on the K bits and obtained CRC check bits. An encoded codeword is output.
Abstract:
A method for performing polar coding is disclosed in the application. A data block is segmented into a plurality of first blocks. Difference in bit length between any two first blocks is not more than one bit. For each first block, one or more consecutive padding bits is added to obtain a second block of a bit length K if the bit length of the first block is less than K, so as to obtain a plurality of second blocks corresponding to the first blocks. N-K consecutive bits are added to each of the second blocks to obtain a plurality of third blocks. Polar encoding is performed on the third blocks.