Abstract:
A system includes a sensor configured to sense an input at a skin surface, a processor configured to receive an output signal from the sensor and generate a haptic control signal based on the output signal, and a haptic output device configured to generate a haptic effect based on the haptic control signal.
Abstract:
The disclosure relates to systems and methods of transferring/storing digital content, and/or providing haptic feedback via wearable devices directly or indirectly responsive to an event such as a communication, an event occurring in an electronic environment and/or physical environment, the transfer of digital content, and/or other events. Wearable devices may be worn at various locations on a body of the user. Each location may be associated with a wearable device. Different haptic feedback may be provided at different locations based on the event such that the events may be distinguished or otherwise identified based on the location at which haptic feedback is provided. The locations may be stored in a configuration of wearable devices that act as a mapping of the wearable devices. The locations and/or haptic feedback itself may be varied based on the context and/or properties such as size of digital content or status of the transfer.
Abstract:
A flexible device includes a bendable-foldable display that has bendable flaps connected by a hinge. The display has sensors for detecting a folding characteristic between the at least two flaps and for detecting a bending characteristic in at least one flap. The display has a haptic system with haptic output devices, where the haptic system receives input from the sensors indicating deformation of the bendable-foldable display device. A flexible device also includes bendable, foldable, or rollable displays that have sensors and actuators to augment user interaction with the device. Based on one or more measurements provided by the input, the haptic system interprets the input to determine deformation characteristics of the bendable-foldable display device. The haptic system generates haptic feedback based on the deformation characteristics.
Abstract:
An interface device configured to provide an electrostatic friction (ESF) effect is disclosed. The interface device comprises a plurality of electrodes disposed at a surface of the interface device. It further comprises a signal generating circuit configured to generate a first drive signal at an output of the signal generating circuit, and comprises a plurality of frequency filter units or delay elements electrically connected to the signal generating circuit and to the plurality of electrodes. The interface device further comprises a control unit configured to use the plurality of frequency filter units or delay elements: (i) to cause only a subset of one or more electrodes of the plurality of electrodes to output one or more respective ESF effects with the first drive signal, or (ii) to cause at least two electrodes to output respective ESF effects with the first drive signal in different respective manners.
Abstract:
A system includes a haptic output device constructed and arranged to generate a haptic effect to a user of the system, and a chemical delivery device constructed and arranged to deliver a chemical to the user of the system.
Abstract:
Systems and methods, by which a sender can deliver haptic messages to selected recipients within a larger group of recipients that are otherwise receiving a common message, are disclosed. The haptic messages can be individualized according to a recipient's profile, preference, and/or relationship with the sender. The haptic message can be created by the sender or selected from a pre-existing library of messages, and can be delivered automatically or assigned by the sender. The haptic messages can be dynamically changed in response to haptic feedback and supplemental data collected from the recipients that is used to update preferences and profiles of message recipients.
Abstract:
Disclosed are systems and methods for converting a control track designed for use with a number and/or type of haptic output devices to be used with other numbers and/or types of haptic output devices. For example, a computing device may convert the control track into another control track that can be applied to other types and/or numbers of haptic output devices. The converted control track may be compatible for use with a smartphone or other system that includes a different number and/or type of haptic feedback devices than the system for which the haptic track was originally designed. In this manner, the user of the smartphone or other system may experience haptic feedback using a device that is different from another haptic feedback system for which the control track was originally designed for use. The conversion may occur locally at the smartphone or other system and/or remotely at another device.
Abstract:
A method and system for avoiding haptic effects conflict is presented. A haptic enabled device configured to generate haptic effects associated with a first signature is used by a user. The system detects an additional source of haptic effects and determines a second signature associated with the haptic effects produced by the source. The system determines a preferred set of haptic configurations and modifies either the first or second signature based on the preferred set of haptic configurations to achieve a minimal conflict between the first and second signatures.
Abstract:
A system provides haptic functionality over a networked system. The system receives information from a first device registered at the networked system and determines a notification to be provided to a user based on the information. The system then selects a second device registered at the networked system and provides the notification to the user by producing a haptic effect on the second device.
Abstract:
A method for providing haptic feedback is provided for a device that produces haptic noise, such as a power tool with an electric motor that produces noises and vibrations while in operation. An environmental condition of the device can be sensed while the device is being operated and generating haptic noise. A haptic noise characteristic of the device can be determined. A haptic drive signal based on the environmental condition and haptic noise characteristic can be generated. The haptic drive signal can be applied to a haptic output device associated with the device.