摘要:
A digital detector of a digital imaging system is provided. In one embodiment, a digital detector includes a detector array disposed in a housing and configured to generate image data based on received radiation. The digital detector may also include a battery configured to be disposed within a receptacle of the housing and to supply operating power to the detector array. In one embodiment, the receptacle and the housing may be configured such that the receptacle is externally accessible to enable a user to selectively insert and remove the battery from the receptacle. Additional systems, methods, and devices are also disclosed.
摘要:
A gain correction and calibration technique for digital imaging systems is provided. In one embodiment, a method may include acquiring a plurality of dark images via a digital detector of an X-ray system. Acquiring the plurality of dark images may include acquiring data from a plurality of data channels of the digital detector during an analog test mode of the digital detector in which calibration voltages are applied to the data channels. The method may also include calibrating a channel gain map of the detector based on the plurality of dark images. Additional systems, methods, and devices are also disclosed.
摘要:
An imaging system includes an analog-to-digital converter configured to convert an analog pixel value into a first digital pixel value. The imaging system also includes an index value source configured to receive the first digital pixel value from the analog-to-digital converter and to generate a digital index value based on a comparison of the first digital pixel value to a digital reference value. In addition, the imaging system includes a transmitter in communication with the index value source and configured to transmit the digital index value. Further, the imaging system includes an image processing component configured to receive the digital index value and to generate a second digital pixel value based at least in part on the received digital index value and a lookup table of the image processing component.
摘要:
A system for eliminating image artifacts caused by electromagnetic interference (EMI) on a portable digital x-ray detector that is capable of non-contact wireless inductively coupled power transfer and capacitively coupled communication and data transfer. An X-ray imaging system comprising a portable digital X-ray detector inductively and capacitively coupled to a power source and communication device that is coupled to a detector receptacle of the X-ray imaging system when the portable digital X-ray detector is located within the detector receptacle to transfer power from a power supply of the power source and communication device to the portable digital X-ray detector and transfer communication and data between the power source and communication device and the portable digital X-ray detector.
摘要:
The present disclosure is directed towards a method of changing wireless communication channels in a connected host and client system. For example, in one embodiment, the link quality of a connection is monitored by the host or the client. If the connection has a link quality below a predetermined threshold but remains intact, a channel switch request is sent, synchronization packages are exchanged between the host and client on the current channel, the channel of the system is changed to a new channel, and the system resumes communications on the new channel.
摘要:
A method for controlling a X-ray radiography system includes acquiring data from a digital X-ray detector, characterizing electromagnetic interference based upon the acquired data, selecting an electromagnetic interference compensation algorithm based upon the characterized electromagnetic interference, acquiring X-ray imaging data via the digital X-ray detector based upon the selected electromagnetic interference compensation algorithm, and processing the X-ray imaging data to produce image data capable of reconstruction in a user viewable form.
摘要:
A computer-implemented method for gain calibration is provided. The method includes sorting the calibration data of each pixel location from the offset-corrected X-ray image data into a sequence. The method also includes removing part of the calibration data from one end or both ends of the respective sequence for each pixel location. The method further includes averaging the calibration data remaining within each respective sequence to obtain an average pixel value for each pixel location. The method yet further includes generating a gain map based on the average pixel value for each pixel location.
摘要:
An x-ray grid alignment circuit for coupling an x-ray grid to a detector includes a marker configured to be mounted to the x-ray grid, a sensor configured to be mounted to the detector, the sensor generating an alignment signal based on a position of the marker, and an alignment module configured to receive the alignment signal from the sensor and utilize the alignment signal to determine if the x-ray grid is coupled to a detecting face of the detector. A detector assembly including the x-ray grid alignment circuit and a method of coupling an x-ray grid to a detector are also provided.
摘要:
Systems, methods and apparatus are provided through which in some implementations a portable digital X-ray detector includes a modular handle that is removeable from a housing of the detector, the modular handle includes component(s) that perform functions that are specific to a number of portable digital X-ray detectors, such as data communication with external devices and/or power conditioning, and the housing of the detector includes the pixel array and component(s) that perform functions that are common to the pixel array. In some implementations, the modular handle includes an interface to the housing to support data communications and/or power supply with the component(s) in the housing and the housing also includes an interface that operably couples to the modular handle.
摘要:
Systems, methods and apparatus are provided through which in some embodiments field-effect-transistor (FET) leakage is estimated recursively from a pixel value obtained when the FET is off. The corrected pixel value is then obtained by subtracting the FET leakage estimate from the pixel value read when the FET is on. A weighing factor is introduced for the FET leakage estimation to achieve the balance between image noise and correction resolution.