Abstract:
According to one embodiment, a display device including a first substrate including an organic film, a first recess and a second recess formed in the organic film, and a first projection having the organic film, a second substrate, and a sealing member located in a second area around a first area, and bonding the first substrate and the second substrate together, wherein the first substrate includes a mounting portion, the first recess and the second recess extend in the second area, a first leading end portion of the first recess is separated from a second leading end portion of the second recess, and the first projection, the first recess and the second recess overlap the sealing member.
Abstract:
According to one embodiment, a display device includes, a first inorganic insulating layer, a first metal layer, a wiring group, a first organic insulating layer formed above the first inorganic insulating layer, the first metal layer and the wiring group, a second inorganic insulating layer formed above the first organic insulating layer and includes an opening portion overlapping the first metal layer, and a first transparent conductive layer formed above the second inorganic insulating layer, overlapping the opening portion and electrically connected to the first metal layer. The first organic insulating layer includes a groove portion which exposes the first inorganic insulating layer between the opening portion and the wiring group.
Abstract:
According to one embodiment, a display device comprises a display panel and a polarizing plate. The display panel comprises a display area, a non-display area surrounding the display area, and a light-shielding layer arranged in the display area and the non-display area. The polarizing plate is provided on a surface of the display panel, and including an end portion located in the non-display area. In this display device, the light-shielding layer opposite to the end portion of the polarizing plate is at least partially removed.
Abstract:
According to one embodiment, a display device includes a first substrate and a second substrate. The first substrate includes a first area including a display portion, a second area adjacent to the first area, and an organic film. The second substrate has a substrate end along a boundary between the first area and the second area, and overlaps the first area. The first substrate includes an alignment film located in the display portion, terminals located in the second area and connected to a signal source, and a first groove formed of the organic film and located between the substrate end of the second substrate and the terminals in the second area. The terminals are arranged in a first direction. The first groove extends in the first direction along the terminals.
Abstract:
According to one embodiment, a display device comprises a first substrate, a second substrate opposed to the first substrate and including a first organic film, a first convex portion extending in a first direction, a second convex portion extending in a second direction intersecting the first direction, and a third convex portion aligned with the first convex portion in the second direction and extending in the first direction, and a sealing member located in a second area around a first area in which an image is displayed, wherein the first convex portion, the second convex portion and the third convex portion are located between the first organic film and the sealing member.
Abstract:
According to one embodiment, A display device includes a first substrate includes an inorganic insulating film, a first wiring formed above the inorganic insulating film, an organic insulating film located above the inorganic insulating film and the first wiring, and a driver electrically connected to the first wiring, a second substrate opposing the first substrate, and a sealant fixing the first substrate and the second substrate, wherein the sealant comprises a first seal portion formed along a first edge of the first substrate and a second seal portion which crosses the first seal portion, and the first seal portion has a first width, and the second seal portion has a second width, the first width being greater than the second width.
Abstract:
In order to avoid generation of black unevenness caused by the water intrusion into a liquid crystal display device, there is to provide a liquid crystal display device including a display area and a terminal portion, in which a TFT substrate with an organic passivation film formed, and an opposite substrate are adhered to each other by a seal portion and a liquid crystal is enclosed there, wherein in, the seal portion of the TFT substrate, a groove-shaped through-hole is formed in the organic passivation film to surround the display area, a water absorption layer formed of the same material in the same process as that of the organic passivation film is formed within the groove-shaped through-hole, and the water absorption layer is not covered with the inorganic insulating film.
Abstract:
A display device includes a substrate and a seal. The seal is provided in a first frame region and a second frame region when seen in a plan view. A spacer is formed from a first end of the substrate to a second end of the substrate on the opposite side of the first end at a boundary between the first frame region and the second frame region. Further, the spacer is in contact with the seal on the first frame region side and on the second frame region side.
Abstract:
According to one embodiment, a display device comprises a display panel and a polarizing plate. The display panel comprises a display area, a non-display area surrounding the display area, and a light-shielding layer arranged in the display area and the non-display area. The polarizing plate is provided on a surface of the display panel, and including an end portion located in the non-display area. In this display device, the light-shielding layer opposite to the end portion of the polarizing plate is at least partially removed.
Abstract:
A shielding metal of an adjacent liquid crystal panel separated from a mother substrate remains at an outer end part of a terminal portion of a liquid crystal display panel. The shielding metal has a two-layered structure including first shielding metals arranged at predetermined pitches and second shielding metals arranged at predetermined pitches. An insulating layer is provided between the first and the second shielding metals. This makes it possible to prevent short-circuit in wirings on a flexible wiring substrate even if the wirings on the flexible wiring substrate are brought into contact with the first or the second shielding metal.