Abstract:
An amine compound represented by Formula 1 below and an organic light-emitting device including an organic layer containing the same: the compound of Formula 1 may be suitable as a hole injecting material, a hole transporting material, or a light-emitting material of an organic light-emitting device. Like the compound of Formula 1, a compound having a hetero ring in its molecular structure has a high glass transition temperature (Tg) or a high melting point due to the inclusion of the hetero ring. Accordingly, when light emission occurs, such a compound has high resistance against Joules' heat generated in an organic layer. between organic layers, and between an organic layer and a metallic electrode, and has high durability in high-temperature environments.
Abstract:
A heterocyclic compound of formula 1 and an organic light-emitting device including an organic layer containing the heterocyclic compound. The heterocyclic compound of Formula 1 may be suitable as a material for an emission layer, an electron transport layer or an electron injection layer of an organic light-emitting device. Due to the inclusion of the heterocylic group in its molecular structure, the heterocyclic compound of Formula 1 may have a high glass transition temperature (Tg) or a high melting point, and may prevent crystallization. An organic light-emitting device manufactured using the heterocyclic compound of Formula 1, in which a chrysene group and an indole group are fused, has excellent durability when stored or operated.
Abstract:
An electrode including metal oxides and a plurality of 12CaO.7Al2O3 particles, a method of preparing the electrode, an electronic device including the electrode, and, in particular, an organic light emitting device including the electrode. The electrode has low resistance, high optical transmittance, and a low work function.
Abstract:
A polarizer includes a base and a plurality of grids arranged on a surface of the base parallel to one another. Each of the grids comprises an intermediate layer and a semi-transmissive metal layer that reflects a part of external light incident thereon and transmits a part of the external light incident thereon. The semi-transmissive metal layer and the intermediate layer are alternately deposited to include at least two semi-transmissive metal layers. The thicknesses of the semi-transmissive metal layers increases in a direction in which the semi-transmissive metal layer is disposed away from the external light. An organic light emitting display apparatus includes the polarizer and has improved contrast and brightness.