摘要:
A pixel circuit, a display device, and a method of driving a pixel circuit able to obtain a source-follower output without luminance deterioration even when the current-voltage characteristic of a light emitting element changes due to aging, making a source-follower circuit of n-channel transistors possible, and in addition able to display uniform and high quality images not without regard to variations of threshold values and mobilities of the active elements inside pixels, wherein a capacitor C111 is connected between a gate and a source of a TFT 111, the source side of the TFT 111 is connected to a fixed potential (GND) through a TFT 114, a predetermined reference current Iref is supplied to the source of the TFT 111 with a predetermined timing, a voltage corresponding to the reference current Iref is held, and an input signal voltage centered about the voltage is coupled, whereby an EL light emitting element 19 is driven centered about the center value of variation of the mobilities.
摘要:
A pixel circuit able to stably and correctly supply a current having a desired value to a light emitting diode of each pixel without being influenced by variation of a threshold value of an active element inside the pixel or variation of mobility and able to display a high quality image as a result of this, wherein a TFT as a fourth switch is turned on together with a TFT as a second switch at the time of an auto-zero operation, a reference current line is connected to a drive transistor of the pixel through a first node, and the variation of the threshold value Vth is corrected, whereby variation of the on current due to the mobility at the time of a white display can be suppressed and the uniformity with respect to variation in the mobility can be greatly enhanced, and a display device and a driving method of the pixel circuit.
摘要:
A pixel circuit able to prevent a spread of the terminal voltages of drive transistors inside a panel and in turn able to reliably prevent deterioration of uniformity, wherein a source of a TFT serving as a drive transistor is connected to an anode of a light emitting element, a drain is connected to a power source potential, a capacitor is connected between a gate and source of the TFT, and a source potential of the TFT is connected to a fixed potential through a TFT serving as a switch transistor and wherein pixel circuit lines are connected by an upper line and bottom line and are arranged in parallel with pixel circuit power source voltage lines so as not to have intersecting parts.
摘要:
Disclosed herein is a display apparatus including: a pixel array section including pixel circuits each having an electro optical device, a signal writing transistor, a signal storage capacitor, and a device driving transistor; and a pixel driving section, wherein: in a no-light emission period, the pixel driving section carries out a threshold-voltage correction process by changing an electric potential appearing on an electrode of the device driving transistor close to the electro optical device toward an electric potential obtained by subtracting the threshold voltage of the device driving transistor from the initialization electric potential of the gate electrode of the device driving transistor and a mobility correction process of negatively feeding a current flowing through the device driving transistor back to the gate electrode of the device driving transistor; and when a current is not flowing through the device driving transistor, the pixel driving section applies a positive bias voltage to the gate electrode of the signal writing transistor.
摘要:
A pixel circuit able to prevent a spread of the terminal voltages of drive transistors inside a panel and in turn able to reliably prevent deterioration of uniformity, wherein a source of a TFT serving as a drive transistor is connected to an anode of a light emitting element, a drain is connected to a power source potential, a capacitor is connected between a gate and source of the TFT, and a source potential of the TFT is connected to a fixed potential through a TFT serving as a switch transistor and wherein pixel circuit lines are connected by an upper line and bottom line and are arranged in parallel with pixel circuit power source voltage lines so as not to have intersecting parts.
摘要:
Disclosed herein is a signal processing apparatus, including: a luminance degradation information production section adapted to produce luminance degradation information regarding degradation of a luminance in accordance with a temperature condition upon emission; a luminance degradation value calculation section adapted to calculate a luminance degradation value regarding degradation of the luminance for each pixel circuit; and a correction section adapted to correct the gradation value of an image signal to be inputted to the pixel circuit based on the luminance degradation value.
摘要:
In the present invention, there is provided an organic electro luminescence device including: an organic electro luminescence light emitting element; and a driving circuit for driving the organic electro luminescence light emitting element, wherein the driving circuit includes (A) an element driving transistor, (B) a video-signal write transistor, and (C) a capacitor having a pair of particular and other electrodes, with regard to the element driving transistor, (A-1) a source/drain area provided on a particular side of the element driving transistor to serve as a particular source/drain area of the element driving transistor is connected to a current supply section, and (A-2) a source/drain area provided on the other side of the element driving transistor to serve as another source/drain area of the element driving transistor is connected to the anode electrode of the organic electro luminescence light emitting element and the particular electrode of the capacitor, forming a second node.
摘要:
In an embodiment of the present invention, for an active-matrix organic EL display in which pixel circuits each including five transistors and one capacitor are two-dimensionally arranged in rows and columns, the timing of transition of a drive signal DS from the “H” level to the “L” level is brought close to the timing of transition of a write signal WS from the “L” level to the “H” level. Furthermore, the active period of a first auto-zero signal AZ1 is overlapped with the active period of the write signal WS. This timing relationship achieves suppression of variation in the source voltage and gate voltage of a drive transistor due to leakage currents, in addition to realization of a function to compensate variation in the characteristic of an organic EL element and a function to compensate variation in the threshold voltage Vth of the drive transistor with a small number of components. Thus, a uniform image quality free from image unevenness can be achieved.
摘要:
A pixel circuit having a function of compensating for characteristic variation of an electro-optical element and threshold voltage variation of a transistor is formed from a reduced number of component elements. The pixel circuit includes an electro-optical element, a holding capacitor, a sampling transistor, and a drive transistor. The sampling transistor samples and supplies an input signal from a signal line so as to be held into the holding capacitor. The driving transistor drives the electro-optical element with current in response to the held signal potential. The threshold voltage of the drive transistor is imparted to the holding capacitor in order to cancel an influence of the threshold voltage.
摘要:
A pixel circuit, display device, and method of driving a pixel circuit enabling source-follower output with no deterioration of luminance even with a change of the current-voltage characteristic of the light emitting element along with elapse, enabling a source-follower circuit of n-channel transistors, and able to use an n-channel transistor as a drive transistor of a light emitting element while using current anode-cathode electrodes, wherein a capacitor C111 is connected between a gate and source of a TFT 111 as a drive transistor, a source side of the TFT 111 is connected to a fixed potential (for example GND) through the TFT 114, the gate and drain of the TFT 111 are connected through the TFT 113 to cancel the threshold value Vth, the threshold value Vth is charged in the capacitor C111, and the input voltage Vin is coupled with the gate of the TFT 111 from the threshold voltage Vth.