摘要:
Methods and apparatus related to group communications in a wireless communications system, e.g., a peer to peer wireless communications system, are described. Methods and apparatus directed to closed groups, e.g., where the number of group members are fixed at a given time and known to one or more members of the group, are described. Various embodiments are well suited to decentralized peer to peer wireless networks including a plurality of individual traffic resources, e.g., traffic slots and/or traffic segments, which may be independently scheduled in a decentralized manner. Some features and/or aspects are directed to the use of individual group member acknowledgement signaling in response to a transmitted group traffic data signal. By monitoring for anticipated individual group member acknowledgment signals and identifying members which have not signaled a positive acknowledgment, re-transmission can be directed and/or tailored to a subset of the group.
摘要:
Systems and methodologies are described that facilitate identifying peers based upon encoded signals during peer discovery in a peer to peer network. For example, direct signaling that partitions a time-frequency resource into a number of segments can be utilized to communicate an identifier within a peer discovery interval; thus, a particular segment selected for transmission can signal a portion of the identifier, while a remainder can be signaled based upon tones communicated within the selected segment. Moreover, a subset of symbols within the resource can be reserved (e.g., unused) to enable identifying and/or correcting timing offset. Further, signaling can be effectuated over a plurality of peer discovery intervals such that partial identifiers communicated during each of the peer discovery intervals can be linked (e.g., based upon overlapping bits and/or bloom filter information).
摘要:
Methods and apparatus for determining band availability and/or allocating one or more frequency bands to a communications device for wireless communications are described. In different locations and/or at different times different frequency bands, e.g., band corresponding to unused TV channels, may be available for allocation. Various described methods and apparatus are well suited for supporting local peer to peer networks in an environment in which a plurality of different technologies are supported. A centralized control device determines and allocates a frequency band to a wireless terminal for use at a given location and at a given time, e.g., for peer to peer communications using a particular technology supported by the wireless terminal. The centralized control device uses database information and information received from a plurality of wireless terminals in making frequency band allocation decisions, performing load balancing, and/or performing interference management.
摘要:
Methods and apparatus related to packet fragmentation and reconstruction are described. A sequence of bits is generated including at least one header and at least partial packet payload prior to a determination of the actual data rate to be used in a communications segment. In some embodiments, the generated sequence of bits corresponds to a prepared information bit stream for a best case scenario in which the highest data rate is selected for segment. Various embodiments allow for the selection of the data rate to be used for the communications segment to be delayed until just prior to the transmission. Thus the selection of the data rate for the communications segment, and thus the segment capacity, can be based on more current channel condition information than would otherwise be possible if the communications device needed to know the data rate for the segment before performing header and packet fragmentation operations.
摘要:
Methods and apparatus supporting load balancing in a wireless communications system implementing decentralized control are described. Different channels, e.g., unused TV channels, are available in different locations for use for communications. Various communications technologies, e.g., WiFi, 3G Blue-Tooth, etc., may be supported by a communications device and may be allowed to be used on the available channels. A wireless communications device evaluates its current local environment, e.g., estimating potential rates that it may use and/or estimating latency, for each of a plurality of available alternative channel/technology combinations. The wireless communications device selects a channel and technology combination to use as a function of its estimates. The wireless communications device uses its selected channel and technology combination for communications, e.g., for peer to peer communications including direct peer to peer traffic signaling as part of a local peer to peer network.
摘要:
Various embodiments relate to using available spectrum for peer to peer communications and for selecting which of several possibly available channels should be used. Various methods and apparatus are well suited to peer to peer networks in which channel usage decisions are made in a decentralized manner. A wireless terminal generates a list of potential available channels to be used for peer to peer communications, e.g., based on FCC information and/or local sensing. Channels are filled in accordance with a predetermined channel ordering. A wireless terminal migrates between the channels in accordance with changes in the number of peer devices using a channel. The network, in a distributed manner, changes the number of channels in use at a location in response to changes in numbers of active peer devices at a location.
摘要:
A method of operating a wireless device includes determining a preferred subset of bands of a set of bands for communicating with a first node, communicating a scheduling request with the first node, and determining whether to schedule a data transmission on each band of the set of bands based on the preferred subset of bands and the scheduling request.
摘要:
Methods and apparatus well suited to decentralized traffic scheduling in wireless peer to peer network are described. An individual wireless terminal corresponding to a peer to peer connection makes a transmitter yielding or receiver yielding decision for a traffic slot. Quality of service information is disseminated as part of the scheduling control signaling. A scheduling control signal, e.g., a traffic transmission request signal or a traffic transmission request response signal, includes a pilot portion and a quality of service information portion. The pilot facilitates the recovery of the quality of service information by a plurality of different devices which may have different channel conditions with respect to the transmitter of the scheduling control signal. The different devices may benefit from utilizing the recovered quality of service information in making a yielding decision regarding traffic signaling in a traffic segment.
摘要:
Methods and apparatus well suited for supporting communications over different ranges in, for example, a peer to peer wireless communications system, are described. In the peer to peer network at least some of the types of signals, e.g., peer discovery signals and/or paging signals, are transmitted with no closed loop power control. An exemplary peer to peer timing structure includes air link resources allocated for a particular type of signaling in which the resources are segmented into multiple blocks which do not overlap in time, different ones of the multiple blocks being associated with different ranges. The characteristics of the basic transmission units of the multiple blocks based on range are different, e.g., tone size and symbol width are different. A wireless communications device implements the peer to peer timing structure and uses resources from different range based blocks at different times. Data traffic transmission units may be the same regardless of the range.
摘要:
Non-coherent modulation is used to communicate coding information via pilot signals using a first subset of resources, and coherent modulation is used to generate data signals. This allows for a stronger global code while keeping individual signaling complexity low. First and second communications devices communicate information using a set of communications resources. By performing non-coherent demodulation on pilot signals received on a first subset of the set of communications resources coding information is recovered. First and second channel estimates are generated from the pilot signals received on the first subset of the communications resources. Coherent demodulation is performed on data signals received on a second subset of the set of communications resources using the first and second channel estimates and the coding information to recover information communicated by the first communications device and to recover separate information communicated by the second communications device.