Abstract:
A developing device includes a developing roller and a layer thickness regulating member. The developing roller includes a fixed magnet and a sleeve. The layer thickness regulating member includes a regulating body portion and an upstream regulating portion, and the upstream regulating portion includes an upstream magnetic member and a nonmagnetic member. Developer is hardly strongly jammed in an area between a first magnetic field concentration point of the regulating body portion and a second magnetic field concentration point of the upstream regulating portion. Thus, even if the sleeve of the developing roller is rotated at a higher speed than before, the developer is stably regulated by the layer thickness regulating member.
Abstract:
A developing device includes a developing roller, a conveyor roller and a developer stirring unit. The developing roller is arranged to face a photoconductive drum at a predetermined developing position. The developing roller includes a fixed first magnet and a first sleeve. The conveyor roller is arranged to face the developing roller at a predetermined facing position. The conveyor roller includes a fixed second magnet and a second sleeve. The developer stirring unit stirs the developer and supplies the developer to the conveyor roller. The first magnet includes a first magnetic pole composed of a predetermined magnetic pole and a second magnetic pole arranged downstream of and adjacent to the first magnetic pole and having the same polarity as the first magnetic pole. The developer is transferred from the developing roller to the conveyor roller after passing through a repulsive magnetic field formed by the first and second magnetic poles.
Abstract:
A developing device includes a developing roller and a conveyor roller. The developing roller includes a first magnet. The conveyor roller includes a second magnet. The first magnet includes a first magnetic pole and a second magnetic pole. The second magnet includes a third magnetic pole and a fourth magnetic pole. The first and fourth magnetic poles are magnetic poles having the same polarity. One of the second and third magnetic poles is a magnetic pole having the same polarity as the first magnetic pole. The other of the second and third magnetic poles is a magnetic pole having a polarity different from the first magnetic pole. The developer is transferred from the conveyor roller to the developing roller by the third and second magnetic poles. The developer is transferred from the developing roller to the conveyor roller by the first and fourth magnetic poles.
Abstract:
A developer container includes a container housing for storing developer, a cylinder section projecting from the container housing and including a developer discharge port, and a rotary member for conveying the developer to the discharge port. The rotary member includes a rotary shaft rotatably supported and having a first part located in the container housing and a second part located in the cylinder section, and a resilient member projecting from the second part of the rotary shaft in a radial direction of rotation of the rotary member and facing the developer discharge port. The resilient member includes a tip end operable to protrude radially outward out of the developer discharge port after rubbing an inner surface of the cylinder section as the rotary shaft of the rotary member makes rotation.
Abstract:
A developing device includes a housing, a development roller, and a roller gear. The roller gear is disposed at one axial end of the development roller and transmits a rotational drive force to the development roller. The development roller includes a sleeve and a coating layer. The coating layer is formed by dipping the sleeve in a dipping bath with the sleeve directed axially vertically. The development roller is mounted to the housing such that a lower axial end of the development roller at the time of the dipping is an opposite axial end to the one axial end at which the roller gear is disposed.
Abstract:
A developer storage container includes a container main body, a tubular portion projecting from the container main body, and a rotary member extending from the container main body to the tubular portion. The rotary member includes a first section located in the container main body and a second section located in the tubular portion. A first conveying member for conveying developer in a first conveying direction is arranged on the second section of a rotary shaft, and a second conveying member for conveying the developer in a second conveying direction is arranged radially outwardly of the first conveying member around the first section. A first flexible member radially extending to a side outward of the second conveying member and a second flexible member radially extending to a side outward of the second conveying member and having a shorter length than the first flexible member are mounted on the rotary shaft.
Abstract:
A developing roller includes a roller main body disposed to face, without contact, an outer circumferential surface of an image carrier. A resin coat layer has been formed on an outer circumferential surface of the roller main body, the resin coat layer being made of a resin material having electric conductivity. A product of resistance component Rs [Ω] and electrostatic capacitance component Cs [F] in AC impedance Z of the roller main body is in a range from 2.79×10−7 to 6.77×10−5, the AC impedance Z being obtained when an AC voltage of a predetermined frequency f is applied.
Abstract:
A developing roller includes a roller main body disposed to face, without contact, an outer circumferential surface of an image carrier. In the roller main body, a boehmite layer has been formed on an outer circumferential surface of a base body that is made of a metal including aluminum, by a surface treatment by a boehmite method, and a resin coat layer has been formed on a surface of the boehmite layer, the resin coat layer being made of a resin material having electric conductivity.
Abstract:
A developing device of this disclosure has: a housing, a developing roller, a developer conveying path, a partition board, a second communication path, a developer receiving port, a first conveying member, a second conveying member, and a conveyance capability inhibition part. A toner is cyclically conveyed in a first conveying path and a second conveying path. A first stirring screw is disposed in the first conveying path and driven into ration around a first rotation axis for toner conveyance. Formed downstream of the first stirring screw by the conveyance capability inhibition part is a toner accumulation part, and the amount of toner refilled from a toner refill port is adjusted. Where an aperture area of the first communication path is A1 and a circular area formed by an outer circumferential edge of the first stirring screw in section orthogonal to the first rotation axis is A2, relationship 0.5×A2
Abstract:
A developing device includes: a housing, a refill developer storage part, a developing roller, a developer conveyance path, a developer receiving port, a conveyance member, and a magnetic member. The developing roller is driven into rotation in the developing housing and carries a toner on a circumferential surface thereof. The toner is conveyed inside the first conveyance path and the second conveyance path of the developing housing in a circulating manner. A first stirring screw is disposed on the first conveyance path and conveys the toner in a first direction. Downstream of the toner refill port, a magnet is arranged. The magnetic member forms a magnetic blush from a top panel of the developing housing towards the first stirring screw. A refill toner flowed-in through the toner refill port is so conveyed as to fall below the magnetic blush whereby the refill toner is favorably stirred with a surrounding toner.