摘要:
Methods and devices are provided for communicating data in a wireless channel. In one example, a method includes adapting the transmission time interval (TTI) length of transport container for transmitting data in accordance with a criteria. The criteria may include (but is not limited to) a latency requirement of the data, a buffer size associated with the data, a mobility characteristic of a device that will receive the data. The TTI lengths may be manipulated for a variety of reasons, such as for reducing overhead, satisfy quality of service (QoS) requirements, maximize network throughput, etc. In some embodiments, TTIs having different TTI lengths may be carried in a common radio frame. In other embodiments, the wireless channel may partitioned into multiple bands each of which carrying (exclusively or otherwise) TTIs having a certain TTI length.
摘要:
Methods and systems are provided to allow signals for multiple service slices using sub-bands that are part of a system bandwidth. In some cases the signals for a given service slice are self-contained within the sub-band in the sense that channels for initial access and ongoing communications are all located within the sub-band. A receiver that is only accessing the given service slice need only be capable of receiving the sub-band. The method may involve, in a first sub-band predefined for a first service slice, transmitting first initial access information for a first service associated with the first service slice. The method further involves, in a second sub-band predefined for a second service slice, transmitting second initial access information for a second service associated with the second service slice. The second sub-band is different from the first sub-band.
摘要:
Methods and Devices that provide mechanisms for an air interface capability exchange are disclosed. The air interface capability exchange enables a user equipment device to signal its air interface configuration capabilities to a network device to facilitate software configurable air interface (SoftAI) optimization. The air interface capability exchange involves a UE device signaling information regarding an air interface configuration capability type of the device's air interface. The air interface configuration capability type identifies whether the device supports multiple air interface configurations of the air interface. The UE device may also transmit information regarding air interface configuration options that it supports. The network device may determine a configuration for the UE device's air interface based at least in part on the information provided by the UE device.
摘要:
Systems and methods of assigning channel state information-reference symbol (CSI-RS) ports to user equipment are provided. In addition resource configurations for transmission of CSI-RS are provided, and methods of mapping CSI-RS sequences to such resources are provided.
摘要:
Systems and methods of scheduling grant-based traffic and mapping resources for grant-free traffic are provided. Grant-based traffic is scheduled in a first frequency partition, and grant-free traffic is mapped in a second frequency partition. In a first option, grant-based traffic is also scheduled in part of the first partition, but in a limited manner that ensures a given device's transmission and retransmissions do not all experience interference with the grant-based traffic. In another option, some grant-free traffic is mapped to part of the second partition and is spread in frequency across the second partition.
摘要:
Systems and methods of assigning channel state information-reference symbol (CSI-RS) ports to user equipment are provided. In addition resource configurations for transmission of CSI-RS are provided, and methods of mapping CSI-RS sequences to such resources are provided.
摘要:
Systems and methods are disclosed in which the start time of a downlink transmission to a user equipment (UE) is more flexible. For example, instead of beginning at predetermined starting points in a frame or subframe, a downlink transmission may instead possibly begin every x OFDM symbols, where x may be as small as one OFDM symbol.
摘要:
A method for user equipment (UE) identification in a wireless network comprising selecting, at the UE, a sequence from a stored pool of possible sequences based on a stored secret value; and transmitting the selected sequence to the wireless network.
摘要:
Systems and methods of transmitting using different cyclic prefix types are provided. In some embodiments, the cyclic prefix type used changes on a per time interval based on characteristics of the traffic. In some embodiments, different cyclic prefix types are used simultaneously during a time interval for different traffic types.
摘要:
Methods and devices that support multiple user equipment (UE) state configurations in a wireless network are provided. A state configuration is selected for a UE from among a plurality of candidate state configurations. Each candidate state configuration is associated with a respective set of one or more predefined operating states from among a plurality of predefined operating states. Information regarding the selected state configuration is then transmitted to the UE.