Abstract:
A power abnormal protection circuit includes a power detection unit, a voltage drop correction unit, a drop out detection unit, a delay unit and a delay masking unit. By detecting an input power average value of a power supply occurring of a brown out condition can be determined. The power supply includes a power factor correction unit which has an output capacitor. By detecting the voltage of the output capacitor a drop out condition can be determined. When a power abnormal condition occurs all units of the power supply can be set off sequentially according to a delay time to protect circuit elements and a connecting computer.
Abstract:
The present invention discloses an active peak voltage-limiting clamp circuit, which comprises a primary switch unit and a secondary switch unit that are used to control the coil current of a transformer, wherein a signal acquisition unit, a zero-point decision unit, a feedback unit and a pulse control unit are used to control the turn-on periods of the primary switch unit and the secondary switch unit; thus, the turn-on period of the primary switch unit is separated from the turn-on period of the secondary switch unit, and a buffer interval for the transient voltage variation is formed therebetween.
Abstract:
A chop-wave control circuit includes a feedback unit, a ramp generation unit, a latchup unit and a voltage transformation unit that is used on a forward transformation circuit which includes at least a main output unit and at least one auxiliary output unit. The feedback unit captures a feedback signal from an output end of the auxiliary output unit to generate a slope regulation signal. The ramp generation unit alters the trigger time sequence of the latchup unit through the slope regulation signal to set an auxiliary flywheel switch ON or OFF. The voltage transformation unit detects potential variations of the latchup unit to set a chop-wave switch ON or OFF. By controlling the auxiliary flywheel switch and the chop-wave switch a power output cycle of the auxiliary output unit can be formed.
Abstract:
A cycle modulation circuit capable of limiting peak voltage to provide a pulse width control signal to a rear end power driving unit includes a comparison unit, an input voltage source and a linear voltage generation unit. The comparison unit compares an oscillation waveform signal generated by the linear voltage generation unit against a base value of a waveform signal level generated by the input voltage source to modulate and output the pulse width control signal of a combined cycle consisting of a high level and a low level. The pulse width control signal is input to the rear end power driving unit to limit the power driving unit in an equal restricted voltage peak value zone and determine the allowable duty cycle according to the level waveform signal.
Abstract:
A simple zero current switch circuit includes a first coil set and a second coil set that are wound at a selected coil ratio and bridge electrically an energy storing inductor, an output diode and a conduction switch of a power-factor corrector. The leaking inductance of the first coil set generates a back electromotive force to make the conduction switch in a zero current switching condition. An energy conversion circuit is provided to store reverse energy according to the coil ratio of the second coil set and the first coil set and reclaims the energy to an output capacitor of the power-factor corrector while the output diode generates a reverse recovery condition. Thereby reverse recovery time of the output diode can be shortened.
Abstract:
The present invention discloses a method for controlling transformer excitation cycles and a circuit for controlling the same, wherein the excitation cycle and the demagnetization cycle, which determine the rise and fall of the excitation current, are modified to prevent the coil from being saturated. In the present invention, a sense current is acquired from the excitation current of the transformer coil, and a demagnetization reference value is set. The sense current is used to determine whether the excitation current is lowered to the demagnetization reference value in the demagnetization cycle. A cycle modifying circuit is used to modify the duty cycle signal output by a pulse control unit until the excitation current is lowered to a preset level.