-
31.
公开(公告)号:US10267918B2
公开(公告)日:2019-04-23
申请号:US16017650
申请日:2018-06-25
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Joseph G. LaChapelle , Jason M. Eichenholz , Stephen D. Gaalema , Austin K. Russell
IPC: G01S17/89 , G01S7/48 , G01J1/44 , G01S17/93 , G01S7/481 , G01S7/497 , G01S17/10 , G01S7/486 , G01S7/484 , G01S17/42 , G01S17/87 , G01S7/00 , G01S7/487 , H01L31/09
Abstract: A scanning system includes a light source configured to emit light as a series of one or more light pulses, a scanner configured to direct the one or more light pulses towards a remote target, and a receiver configured to detect light scattered by the remote target. The receiver includes a light detector element disposed on an ASIC that includes multiple comparators disposed in parallel with one another, and corresponding time-to-digital converters (TDCs) coupled to the comparator. Each of the comparators processes a received electrical signal from the light detector element to produce a digital edge signal when the amplitude of the received electrical signal reaches a particular threshold. A corresponding TDC outputs a time delay value associated with a time at which the received electrical signal reaches the particular threshold.
-
公开(公告)号:US10254388B2
公开(公告)日:2019-04-09
申请号:US15909012
申请日:2018-03-01
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Joseph G. LaChapelle , Matthew D. Weed , Scott R. Campbell , Jason M. Eichenholz , Austin K. Russell , Lane A. Martin
IPC: G01C3/08 , G01S7/484 , G01W1/02 , G01S17/10 , G01S17/42 , G01S7/00 , G01S7/497 , G01S17/95 , G01S17/93 , G01S7/486
Abstract: To detect an atmospheric condition at the current location of a lidar system, a receiver in the lidar system detects a return light pulse scattered by a target and analyzes the characteristics of the return light pulse. The characteristics of the return light pulse include a rise time, a fall time, a duration, a peak power, an amount of energy, etc. When the rise time, fall time, and/or duration exceed respective thresholds, the lidar system detects the atmospheric condition such as fog, sleet, snow, rain, dust, smog, exhaust, or insects. In response to detecting the atmospheric condition, the lidar system adjusts the characteristics of subsequent pulses to compensate for attenuation or distortion of return light pulses due to the atmospheric condition. For example, the lidar system adjusts the peak power, pulse energy, pulse duration, inter-pulse-train spacing, number of pulses, or any other suitable characteristic.
-
公开(公告)号:US10211593B1
公开(公告)日:2019-02-19
申请号:US15828415
申请日:2017-11-30
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Laurance S. Lingvay , Alain Villeneuve , Jason M. Eichenholz
Abstract: In one embodiment, an optical amplifier includes a first pump laser diode and a second pump laser diode. The first pump laser diode is configured to produce pump light that includes a first amount of optical power at a first wavelength, and the second pump laser diode is configured to produce pump light that includes a second amount of optical power at a second wavelength different from the first wavelength. The optical amplifier also includes an optical gain fiber configured to receive the pump light from the first and second pump laser diodes and provide optical gain for an optical signal propagating through the optical gain fiber. The optical amplifier further includes a controller configured to adjust the first amount of optical power produced by the first pump laser diode and the second amount of optical power produced by the second pump laser diode.
-
公开(公告)号:US20180364356A1
公开(公告)日:2018-12-20
申请号:US15364085
申请日:2016-11-29
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light and a scanner configured to scan at least a portion of the emitted pulses of light across a field of regard. The lidar system also includes a receiver configured to detect at least a portion of the scanned pulses of light scattered by a target located a distance from the lidar system.
-
公开(公告)号:US20180286909A1
公开(公告)日:2018-10-04
申请号:US15909563
申请日:2018-03-01
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Jason M. Eichenholz , Scott R. Campbell , Joseph G. LaChapelle
IPC: H01L27/146 , G01S7/481
CPC classification number: H01L27/14634 , G01S7/4816 , G01S17/936 , H01L24/49 , H01L2224/73253 , H01L2224/73265 , H01L2924/1433
Abstract: To detect light from light pulses at the operating wavelength of a light source in a lidar system, a thin-film notch filter is directly deposited on a photodetector or a lens via vacuum deposition or monolithic epoxy. The thin-film notch filter may include an anti-reflective coating such as a pattern-coated dichroic filter having an optical transmission of 90% or greater at in-band wavelengths and less than 5% at out-of-band wavelengths. To deposit the filter onto the photodetector without disrupting electronic connections between the photodetector and an application-specific integrated circuit, the area surrounding the electrodes on the photodetector is kept open using photolithography.
-
公开(公告)号:US20180284279A1
公开(公告)日:2018-10-04
申请号:US15917628
申请日:2018-03-10
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Scott R. Campbell , Joseph G. LaChapelle , Jason M. Eichenholz , Austin K. Russell
Abstract: A lidar system includes a transmitter that encodes successive transmit pulses with different pulse characteristics and a receiver that detects the pulse characteristics of each received (scattered or reflected) pulse and that distinguishes between the received pulses based on the detected pulse characteristics. The lidar system thus resolves range ambiguities by encoding pulses of scan positions in the same or different scan periods to have different pulse characteristics, such as different pulse widths or different pulse envelope shapes. The receiver includes a pulse decoder configured to detect the relevant pulse characteristics of the received pulse and a resolver that determines if the pulse characteristics of the received pulse matches the pulse characteristics of the current scan position or that of a previous scan position.
-
公开(公告)号:US20180284241A1
公开(公告)日:2018-10-04
申请号:US15710744
申请日:2017-09-20
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Scott R. Campbell , Lane A. Martin , Matthew D. Weed , Jason M. Eichenholz
Abstract: A lidar system includes a light source, a scanner, and a receiver and is configured to detect remote targets located up to RMAX meters away. The receiver includes a detector with a field of view larger than the light-source field of view. The scanner causes the detector field of view to move relative to the instantaneous light-source field of view along the scan direction, so that (i) when a pulse of light is emitted, the instantaneous light-source field of view is approximately centered within the detector field of view, and (ii) when a scattered pulse of light returns from a target located RMAX meters away, the instantaneous light-source field of view is located near an edge of the field of view of the detector and is contained within the field of view of the detector.
-
38.
公开(公告)号:US20180231659A1
公开(公告)日:2018-08-16
申请号:US15296881
申请日:2016-10-18
Applicant: Luminar Technologies, Inc.
Inventor: Scott R. Campbell , Jason M. Eichenholz , Matthew D. Weed
CPC classification number: G01S17/102 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4876 , G01S7/497 , G01S17/08 , G01S17/88
Abstract: A lidar system with improved signal-to-noise ratio in the presence of solar background noise. The lidar system can comprise a light source to emit light toward a target. The light source can have an operating wavelength which lies within a band that delineates a relative maximum in atmospheric absorption. The lidar system can also include a detector to detect scattered light from the target and a processor to determine a characteristic of the target based on a characteristic of the scattered light received at the detector.
-
公开(公告)号:US09897687B1
公开(公告)日:2018-02-20
申请号:US15479167
申请日:2017-04-04
Applicant: Luminar Technologies, Inc.
Inventor: Scott R. Campbell , Jason M. Eichenholz , Lane A. Martin , Matthew D. Weed
CPC classification number: G01S7/4817 , G01S7/4812 , G01S7/4816 , G01S17/10 , G01S17/42 , G01S17/89
Abstract: A lidar system may have a light source configured to emit pulses of light along a field of view of the light source and a scanner to scan the light source field of view in a scanning direction across a plurality of pixels located downrange from the lidar system. The scanner can direct a pulse of light, which is emitted by the light source along the light source field of view, toward a pixel and can scan a field of view of a first detector. The first detector field of view can be scanned in the scanning direction across the plurality of pixels and the scanning speed of the first detector field of view can be approximately equal to the scanning speed of the light source field of view. The first detector can detect a portion of the pulse of light scattered by a target located at least partially within the pixel.
-
公开(公告)号:US09874635B1
公开(公告)日:2018-01-23
申请号:US15470718
申请日:2017-03-27
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
CPC classification number: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system having a light source to emit an output beam and an overlap mirror having a reflecting surface with an aperture through which the output beam passes. The lidar system may include mirrors driven by a galvanometer scanner, a resonant scanner, a microelectromechanical systems device, or a voice coil motor. The mirrors may direct the output beam toward a light source field of view (FOV) and may move the light source FOV to different locations within a field of regard. The mirrors may receive reflected portions of the output beam as an input beam and direct the input beam toward the reflecting surface of the overlap mirror. The lidar system may include a receiver to receive the input beam from the reflecting surface of the overlap mirror. The receiver may have a receiver FOV that moves synchronously with, and at least partially overlaps, the light source FOV.
-
-
-
-
-
-
-
-
-