Abstract:
Various fixation techniques for implantable medical device (IMDs) are described. In one example, an assembly comprises an IMD; and a set of active fixation tines attached to the IMD. The active fixation tines in the set are deployable from a spring-loaded position in which distal ends of the active fixation tines point away from the IMD to a hooked position in which the active fixation tines bend back towards the IMD. The active fixation tines are configured to secure the IMD to a patient tissue when deployed while the distal ends of the active fixation tines are positioned adjacent to the patient tissue.
Abstract:
Methods and systems of making a medical electrical lead type having a set of tines. A system for implantation of a lead medical electrical lead in contact with heart tissue, comprises an elongated lead body; a set of curved tines mounted to and extending from a distal end of the lead body, the tines having a length (dD) and an effective cross sectional area, and a delivery catheter. The delivery catheter encloses the lead body and has a distal capsule portion enclosing the tines. The tines exerting a spring force against the capsule and provide a stored potential energy. The delivery catheter has an elastic, not stiff and low column strength ejection means for advancing the lead and tines distally from the capsule and fixating the tines within the heart tissue, the controllable and the stored potential energy of the tines together provide a deployment energy. The tines when so fixated in the tissue provide a fixation energy. The deployment energy and the fixation energy of the tines are equivalent.
Abstract:
A tethering feature includes an elongate break-away member and a base, and forms a proximal end of an implantable medical device housing. A tether attachment zone of the break-away member extends between break-away member ends, and the base includes a pair of supports, wherein each end of the break-away member is wrapped around a corresponding support. A delivery catheter tether may be attached to the device tethering feature by passing a looped portion of the tether around the tether attachment zone. The device may be untethered from the catheter by applying a pull force through the attached tether, while a distal end of a shaft of the catheter, which abuts the device proximal end, provides a back-up force, the pull force unwrapping each end of break-away member from the corresponding base support.
Abstract:
Various fixation techniques for implantable medical device (IMDs) are described. In one example, an assembly comprises an IMD; and a set of active fixation tines attached to the IMD. The active fixation tines in the set are deployable from a spring-loaded position in which distal ends of the active fixation tines point away from the IMD to a hooked position in which the active fixation tines bend back towards the IMD. The active fixation tines are configured to secure the IMD to a patient tissue when deployed while the distal ends of the active fixation tines are positioned adjacent to the patient tissue.
Abstract:
A tine portion of an implantable medical device includes a hook segment and a distal segment extending therefrom, wherein the hook segment is pre-set to extend along a curvature and is elastically deformable therefrom to an open position. The distal segment includes a tooth and an end that surrounds the tooth, wherein the end includes a pair of legs and a distal arch. The legs extend along a length of, and on opposing sides of the tooth, and the distal arch extends between the legs, distal to a tissue-piercing tip of the tooth. When the hook segment is in the open position, and a force is applied along a longitudinal axis of the device, to push the distal arch of the distal segment against tissue, for initial tissue penetration, the legs of the end of the distal segment bend in elastic deformation to expose the tissue-piercing tip to the tissue.
Abstract:
A tine portion for an implantable medical device includes a hook segment and a distal segment terminated by a tissue-piercing tip, wherein the distal segment extends from the hook segment to the tip. The hook segment, which is elastically deformable from a pre-set curvature, has one of: a round cross-section and an elliptical cross-section, while the distal segment has a flattened, or approximately rectangular cross-section. One or a pair of the tine portions may be integrally formed, with a base portion, from a superelastic wire, wherein the base portion is configured to fixedly attach to the device, for example, being captured between insulative members of a fixation subassembly.
Abstract:
A tine portion of an implantable medical device includes a hook segment and a distal segment extending therefrom, wherein the hook segment is pre-set to extend along a curvature and is elastically deformable therefrom to an open position. The distal segment includes a tooth and an end that surrounds the tooth, wherein the end includes a pair of legs and a distal arch. The legs extend along a length of, and on opposing sides of the tooth, and the distal arch extends between the legs, distal to a tissue-piercing tip of the tooth. When the hook segment is in the open position, and a force is applied along a longitudinal axis of the device, to push the distal arch of the distal segment against tissue, for initial tissue penetration, the legs of the end of the distal segment bend in elastic deformation to expose the tissue-piercing tip to the tissue.
Abstract:
A tine portion for an implantable medical device includes a hook segment and a distal segment terminated by a tissue-piercing tip, wherein the distal segment extends from the hook segment to the tip. The hook segment, which is elastically deformable from a pre-set curvature, has one of: a round cross-section and an elliptical cross-section, while the distal segment has a flattened, or approximately rectangular cross-section. One or a pair of the tine portions may be integrally formed, with a base portion, from a superelastic wire, wherein the base portion is configured to fixedly attach to the device, for example, being captured between insulative members of a fixation subassembly.
Abstract:
An implantable medical device (IMD) includes a body, a fixation component, and an interface assembly. The body extends from a proximal portion to a distal portion along a longitudinal axis. The fixation component includes a penetrator tine. The penetrator tine includes an incisive distal end configured to penetrate a tissue to fix the IMD to the tissue. The electrode interface assembly includes a proximal section and a distal section. The proximal section is attached to and extends distally from the distal portion of the body along the longitudinal axis. The distal section extends from the proximal section of the electrode interface assembly and defines a non-incisive distal end. The distal end of the electrode interface assembly is configured to contact the tissue to control a depth of tissue penetration of the penetrator tine.
Abstract:
Various fixation techniques for implantable medical device (IMDs) are described. In one example, an assembly comprises an IMD; and a set of active fixation tines attached to the IMD. The active fixation tines in the set are deployable from a spring-loaded position in which distal ends of the active fixation tines point away from the IMD to a hooked position in which the active fixation tines bend back towards the IMD. The active fixation tines are configured to secure the IMD to a patient tissue when deployed while the distal ends of the active fixation tines are positioned adjacent to the patient tissue.