Abstract:
A multilayer ceramic capacitor includes a laminate including ceramic layers and internal electrode layers arranged in a stacking direction, and two or more exposure regions at which the internal electrode layers and the ceramic layer interposed between the internal electrode layers are both exposed. The laminate has a rectangular parallelepiped configuration or shape and includes two longitudinal end surfaces, and four surfaces orthogonal to the end surfaces. On at least one of the four surfaces, the laminate includes a protrusion in which the exposure region protrudes outward.
Abstract:
A multilayer ceramic capacitor includes a substantially cuboid laminated body including ceramic layers and internal electrode layers laminated, and two or more exposed regions where the plurality of internal electrode layers are exposed, and external electrodes, wherein at least one of the external electrodes is an external electrode with resistance, the internal electrode layers include a first internal electrode layer and a second internal electrode layer opposed to the first internal electrode layer in the lamination direction, and the external electrode with resistance includes a thin film electrode layer in direct contact with the internal electrode layer in the exposed region, a resistive electrode layer provided on the thin film electrode layer, and an upper electrode layer provided on the resistive electrode layer, which has a lower electrical resistivity lower than the resistive electrode layer.
Abstract:
A method of manufacturing a multilayer ceramic capacitor includes preparing a laminate by providing ceramic layers and internal electrode layers arranged in a stacking direction, and providing two or more exposure regions at which the internal electrode layers and the ceramic layer interposed between the internal electrode layers are both exposed, and transferring a first conductive paste to the laminate. In the preparing, forming the laminate to have a rectangular parallelepiped configuration or shape and to includes two longitudinal end surfaces, and four surfaces orthogonal or substantially orthogonal to the end surfaces and, on at least one of the four surfaces, a protrusion in which the exposure region protrudes outward. In the transferring, the first conductive paste is applied to a transfer jig including a groove, and the first conductive paste in the groove is transferred to a surface of the protrusion.
Abstract:
A multilayer ceramic electronic component includes a laminated body, a first external electrode, a pair of second external electrodes, and a pair of insulating coating portions. The pair of insulating coating portions extends in a laminating direction between each of the pair of second external electrodes and the first external electrode on a second principal surface, from the second principal surface to respective portions of a first side surface and a second side surface. A maximum thickness of the first external electrode on the second principal surface is larger than a maximum thickness of the pair of second external electrodes on the second principal surface. The maximum thickness of the pair of second external electrodes on the second principal surface is larger than a maximum thickness of the pair of insulating coating portions on the second principal surface.
Abstract:
In a multilayer capacitor, a multilayer capacitor main body includes first and second main surfaces, first and second side surfaces, and first and second end surfaces, the first and second main surfaces extending in a length direction and a width direction, the first and second side surfaces extending in the length direction and a thickness direction, and the first and second end surfaces extending in the width direction and the thickness direction. The second main surface is depressed in a portion extending from opposite ends of the second main surface toward a center of the second main surface in the length direction.
Abstract:
In an electronic component, a first terminal electrode is disposed on a first side surface and extends to a second principal surface. A second terminal electrode is disposed on a second side surface and extends to the second principal surface. A third terminal electrode is disposed on a third side surface and extends to the second principal surface. A fourth terminal electrode is disposed on a fourth side surface and extends to the second principal surface. Maximum values of thicknesses of portions located on the second principal surface of the third and fourth terminal electrodes are smaller than maximum values of thicknesses of portions located on the second principal surface of the first and second terminal electrodes.
Abstract:
In a gravure printing plate, a ratio of an area ratio of part of a second portion excluding second protrusions to the second portion, to an area ratio of a part of a portion excluding first protrusions to a portion that is part of a first portion that is located closer to the second portion than a line-shaped portion of a first protrusion located closest to the second portion ((an area ratio of the part of the second portion excluding the second protrusions to the second portion)/(an area ratio of the part of the portion excluding the first protrusions to the portion, the portion being a part of the first portion that is located closer to the second portion than the line-shaped portion of the first protrusion located closest to the second portion)) is about 0.3 or more and about 0.9 or less.