Abstract:
A capacitive strain sensor for sensing strain of a structure. The sensor includes a first section attached to the structure at a first location and a second section attached to the structure at a second location. The first section includes a capacitor plate electrically isolated from the structure and the second section includes two electrically isolated capacitive plates, both of the plates being electrically isolated from the structure. A flexible connector connects the first section to the second section. The capacitor plate of the first section is separated from the two capacitive plates of the second section by at least one capacitive gap. When strain is experienced by the structure, a change occurs in the capacitive gap due to relative motion between the first and second sections. The first section includes a core and the second section includes a ring that receives the core.
Abstract:
An inertial measurement system having a triangular cupola shaped base structure with three mutually orthogonal sides and a bottom surface surrounding a hollow core. The bottom surface includes an aperture providing access to the hollow core. An inertial module is mounted on each of the sides and includes a gyroscopic rotational rate sensor and a linear accelerometer connected to a circuit board. The inertial measurement system also includes a motherboard and a plurality of metallization elements. The metallization elements extend from the bottom surface to the sides of the base structure and conductively connect the inertial module to the motherboard. The inertial measurement system may also include a non-conductive adhesive underfill positioned between the inertial module and the base structure.
Abstract:
A Coriolis effect device includes a housing defining an interior chamber having a central axis, an inlet, an outlet, a leading disc and a trailing disc. Each disc is supported for oscillatory movement within the interior chamber of the housing. The leading disc defines a leading flow path in fluid communication with the inlet and interior chamber, wherein a portion of the leading flow path extends radially with respect to the central axis. The trailing disc is axially spaced from the leading disc. The trailing disc defines a trailing flow path in fluid communication with the interior chamber and the outlet, wherein a portion of the trailing flow path extends radially with respect to the central axis. A phase difference between leading and trailing oscillating signals picked up from the disc movement can be used to determine a mass flow rate of fluid passing from the inlet to the outlet.
Abstract:
A metallization layer that includes a tantalum layer located on the component, a tantalum silicide layer located on the tantalum layer, and a platinum silicide layer located on the tantalum silicide layer. In another embodiment the invention is a component having a metallization layer on the component. In another embodiment, the metallization layer has a post-annealing adhesive strength to silicon of at least about 100 MPa as measured by a mechanical shear test after exposure to a temperature of about 600° C. for about 30 minutes, and the metallization layer remains structurally intact after exposure to a temperature of about 600° C. for about 1000 hours. The metallization is useful for bonding with brazing alloys.