Abstract:
In a terminal, based on a first parameter included in each of a plurality of downlink control signals, the first parameter indicating a cumulative count of code block groups (CBGs) configuring each of a plurality of transport blocks (TBs) assigned by the plurality of downlink control signals, a HARQ-ACK generation unit generates a response signal (HARQ-ACK) for each of the code block groups. A transmission unit collectively transmits the response signals for each of the code block groups.
Abstract:
It is an object to provide a sequence allocating method that, while maintaining the number of Zadoff-Chu sequences to compose a sequence group, is configured to make it possible to reduce correlations between different sequential groups. This method comprises the steps of setting a standard sequence with a standard sequence length and a standard sequence number in a step, setting a threshold value in accordance with an RB number in a step, setting a sequence length corresponding to RB number in a step, judging whether ¦r/N−rb/Nb¦=Xth(m) is satisfied in a step, including a plurality of Zadoff-Chu sequences with a sequence number and a sequence length in a sequence group in a step if the judgment is positive, and allocating the sequence group to the same cell in a step.
Abstract:
In a terminal, a selecting unit selects one generation method from a plurality of generation methods for reference signals (sounding reference signals (SRSs)). A radio transmitting unit transmits reference signals (SRSs) generated in accordance with the selected generation method.
Abstract:
In the multiple short sequence based SRS, multiple items of sequence data having a short sequence length corresponding to a partial band are used for transmitting SRS in discontinuous bands. In the multiple short sequence based SRS, a terminal specifies a frequency domain to be used for transmitting a reference signal using predetermined sequence data, applies a phase shift index associated with the specified frequency domain to the reference signal, and transmits the reference signal to which the phase shift index is applied by using the specified frequency domain.
Abstract:
In the multiple short sequence based SRS, multiple items of sequence data having a short sequence length corresponding to a partial band are used for transmitting SRS in discontinuous bands. In the multiple short sequence based SRS, a terminal specifies a frequency domain to be used for transmitting a reference signal using predetermined sequence data, applies a phase shift index associated with the specified frequency domain to the reference signal, and transmits the reference signal to which the phase shift index is applied by using the specified frequency domain.
Abstract:
It is an object to provide a sequence allocating method that, while maintaining the number of Zadoff-Chu sequences to compose a sequence group, is configured to make it possible to reduce correlations between different sequential groups. This method comprises the steps of setting a standard sequence with a standard sequence length and a standard sequence number in a step, setting a threshold value in accordance with an RB number in a step, setting a sequence length corresponding to RB number in a step, judging whether ¦r/N-rb/Nb¦=Xth(m) is satisfied in a step, including a plurality of Zadoff-Chu sequences with a sequence number and a sequence length in a sequence group in a step if the judgment is positive, and allocating the sequence group to the same cell in a step.
Abstract:
In a terminal, an SRS drop control unit drops a portion of partial bands from among a plurality of partial bands in a case where transmission power for reference signals generated using a plurality of sequences having a sequence length that corresponds to a partial band exceeds a threshold value. Furthermore, a radio transmission unit transmits the reference signals by means of the remaining partial bands other than the portion of partial bands that are dropped from among the plurality of partial bands.
Abstract:
Provided are a base station apparatus and a communication method that can preclude the recognition mismatch in which the reference formats of different UL grants are recognized between a wireless communication terminal apparatus and the base station apparatus by using power headroom (PHR) calculation. For the PHR calculation of a PUSCH in a CC in which no UL grant is present, a UL grant, which was used for calculating the PHR in another CC having the same subframe number as the PUSCH, is used. For example, as to a subframe number=#1, the UL grant of CC #0 is used for calculating the PHR of CC #2 in which no UL grant is present.
Abstract:
Disclosed are a radio transmission device and a radio transmission method which reduce the RACH conflict ratio and improve the RACH detection characteristic. When the device and the method are used: as the number of signature numbers allocated for UE by the network side increases, the condition for allocating a signature by UE itself is mitigated and an expectation value which is a statistic average value of the RA quantity using the signature allocated by UE for itself is decreased; and as the number of signature numbers allocated for UE by the network side decreases, the condition for allocating a signature by UE itself is limited and an expectation value of the RA quantity using the signature allocated by UE for itself is increased.
Abstract:
A sequence allocating method and apparatus wherein in a system where a plurality of different Zadoff-Chu sequences or GCL sequences are allocated to a single cell, the arithmetic amount and circuit scale of a correlating circuit at a receiving end can be reduced. In ST201, a counter (a) and a number (p) of current sequence allocations are initialized, and in ST202, it is determined whether the number (p) of current sequence allocations is coincident with a number (K) of allocations to one cell. In ST203, it is determined whether the number (K) of allocations to the one cell is odd or even. If K is even, in ST204-ST206, sequence numbers (r=a and r=N−a), which are not currently allocated, are combined and then allocated. If K is odd, in ST207-ST212, for sequences that cannot be paired, one of sequence numbers (r=a and r=N−a), which are not currently allocated, is allocated.