Abstract:
A method for selectively protecting a component made of an iron-base alloy, cobalt-base alloy or nickel-base alloy with a protective arrangement which protects select areas of the component from aluminizing or chromizing during gas diffusion coating, wherein a first layer acts as an interlayer and a second layer acts as a getter layer for reaction gases. The method comprises the steps of depositing a first layer of slip cast material comprising oxide ceramic particles carried in a low-carbon, halide free, liquid vehicle; depositing a second layer comprising metal or a metallic slip, which comprises at least 50% by weight of the base metal of the component and all major alloy constituents of the component; aluminizing or chromizing by gas diffusion coating; and removing the protective arrangement from the component.
Abstract:
This invention relates to a component of an iron, cobalt or nickel-base alloy with a protective arrangement to prevent aluminizing or chromizing during gas diffusion coating, with a first layer as an interlayer and a second layer as a getter layer for reaction gases, where the first layer is a slip casting layer composed of oxide ceramic particles carried in a low-carbon vehicle free from halide, and the second layer is a metal layer or a metallic slip casting layer. The metal layer contains at least 50% by weight of the base-metal fraction of the component and exhibits all major alloy constituents of the component. The metal layer may be a sintered metal shape.
Abstract:
A method for the powder pack coating of hollow structural components is performed with spherical powder particles of a donor metal in which the hollow component is embedded. During the embedding, the component is subjected to a tumbling motion about several spatial axes to fill all cavities in the component. After the powder pack coating process the cavities of the component are cleared of any excess powder particles under the action of a gas stream. This method is suitable especially for coating engine blades having cooling ducts and cooling air holes, such as turbine blades. The effect of the forced air flow through the internal cavities for the removal of excess powder out of the hollow component is enhanced by simultaneously vibrating the component.