Abstract:
A plurality of cotton boll modules are received by a cotton ginning plant from a plurality of cotton field locations. A sample of cotton modules is removed from each field lot. The sample and the field lot are identified and identification data associating the sample with its field lot is generated. Each field lot sample is separately processed to produce cotton lint. The cotton lint is assayed to determine a relative quality of the lint or the sample. The assay information from the several samples is used to establish a formula for blending cotton from a plurality of field locations to form a blend of a desired intermediate quality. The identification data is used for locating modules to be blended from the various field lots. The located modules are delivered to dispersers and the dispersers are used to disperse cotton boll clumps from the modules in amounts necessary to form the desired amount of the desired blend of cotton boll clumps. The cotton boll clumps are blended. The blended cotton boll clumps are then cleaned and ginned to form a cotton lint blend.
Abstract:
Two dispersers tunnels (20, 22) are provided at a disperser station. Each disperser tunnel (20, 22) houses two dispersers (24, 26 and 28, 30). Each pair of dispersers (24, 26 and 38, 30) are spaced apart and confront each other, with a mixing zone (42, 54) being defined between them. A separate conveyor (32, 34, 36, 38) is provided for feeding textile fiber modules, e.g. cotton boll modules (18, 18′, 18″, 18′″), to the dispersers (24, 26, 28, 30). Each pair of dispersers (24, 26) removes fiber clumps from the leading ends of the modules (18, 18′, 18″, 18′″) and dispenses them into the mixing zone (42, 54) in admixture with the fiber clumps from the other disperser (24, 26, 28, 30) of the pair. The blend or mixture of fiber clumps is collected in the upper run (50) of a conveyor (52) that serves to carry the fiber clumps away from the disperser station. The feed rate of the modules (18, 18′, 18″, 18′″) may be regulated and varied by regulating and varying the speed rates of the conveyors (32, 34, 36, 38). The feed conveyors may be provided with sidewalls so as to define storage bins. Bodies of particulate material may be stored in the storage bins and feed to the dispersers by use of the feed conveyors. The dispersers can be operated to dispense particles from the bodies of particulate material into the mixing zone, in admixture with particles of the other disperse of the pair. The feed rate of the conveyors can be varied for varying the feed rate of particulate material to the dispersers.
Abstract:
Three tandem drive units are provided. Outward variable volume working chambers at one end of the drive units are connected via passageways in the piston rods with inward variable volume working chambers at the opposite end of the drive units. In similar fashion, inward variable volume working chambers at the first ends of the drive units are connected to outward variable volume working chambers at the second ends of the drive units, also via passageways in the piston rods. At each end of the assembly, the piston rods pass through piston rod receiving openings in a cylinder head forming member. Each cylinder head forming member includes a manifold passageway and spool valves for controlling a sequencing movement of the drive units. The piston rods provide the spools for the spool valves.
Abstract:
Bolt fasteners extend through a bottom wall (38) in longitudinal guide beams (14), to secure the guide beams (14) to transverse frame members (70, 72). The guide beams (14) include sidewalls (40, 42) which extend upwardly from the bottom wall (30) to laterally outwardly extending top flanges (44, 46). The bolts may be installed from above by use of a tool that is inserted into the space between the sidewalls (40, 42). After the guide beams (14) are secured to the frame members (70, 72), bearing/seal members (48) are snap-fitted onto the tops of the support beams (14). Conveyor slats are installed in the spaces between the support beams (14). The conveyor slats (10) include side portions (20, 22) which extend laterally outwardly into positions above the bearing/seal members (48). The side members (20, 22) include downwardly extending beads B which contact the upper surfaces (62) of the bearing/seal members (48).
Abstract:
A drive assembly has a plurality of piston/cylinder drive units each of which has a piston component longitudinally fixed to a fixed transverse frame member. First and second working chambers in a movable cylinder component are connected to pressure and return through passageways extending through the piston rod of the piston component. A ball member on the outer end of the piston rod is received in a socket structure that has passageways communicating with the piston passageways. A manifold structure is secured to the socket structures and houses a plurality of internal valves including a switching valve with a single external pressure port and a single external return port. The socket structures and manifold structure have abutting surfaces that form internal fluid connections to allow operation of the conveyor without external fluid ports other than the two ports of the switching valve.
Abstract:
A power driven, reciprocating slat conveyor (12) is provided on a dock (D). A passive, reciprocating slat conveyor (10) is provided within a trailer (T). The power driven conveyor (12) is coupled to the passive conveyor (10) so that the drive mechanism of the power driven conveyor (12) can be used to operate both conveyors (10, 12) in conjunction. All of the conveyor slats (14) of the dock conveyor (12) can be directly connected to corresponding conveyor slats (16) of the trailer conveyor (10). Or, one conveyor slat (14) from each set of conveyor slats in the power driven conveyor (12) can be connected to a corresponding conveyor slat in the passive conveyor (10) and these conveyor slats in the passive conveyor (10) can each be connected to a transverse drive beam which is connected to the remaining conveyor slats of the same set of conveyor slats. Or, the drive units of the powered conveyor (12) can be coupled to transverse drive beams which are connected to the sets of slats in the passive conveyor (10).
Abstract:
Side-by-side conveyor slats (62) have laterally outwardly extending opposite upper side portions (72,74), each including a depending, longitudinal support and seal bead (B) having a lower edge that contacts and slides along a longitudinal bearing/seal surface (78) on a longitudinal support beam (14) that is below it. The conveyor slats (62) have laterally spaced apart depending leg portions (24, 26), each with a laterally outwardly directed flange (64, 66). These flanges (64,66) are offset vertically below the upper side portion (72, 74) on its side of the conveyor slat (62). A longitudinal support beam (14) is positioned between each adjoining pair of conveyor slats (62), below adjacent upper side portions (72, 74) of the adjoining conveyor slats (62). A longitudinal bearing/seal member (80) is supported on, extends along and is connected to each support beam (14). The longitudinal bearing/seal members (80) have side portions that project laterally outwardly from opposite sides of the support beams (14), each into a position that is above an adjacent outwardly directed flange (64, 66) on an adjacent depending leg (68, 70) of an adjoining conveyor slat (62), for blocking upward movement of the conveyor slats (62) up off of the bearing/seal members (80).
Abstract:
A draft attachment for wheeled implements. The attachment is characterized by an elongated frame member having a coupling located at one end thereof adapted to connect the frame member with a wheel-supported implement, a singular ground wheel disposed substantially beneath the opposite end of the frame member and pivotally connected thereto in supporting relation therewith, a power train connected to the wheel for selectively driving the ground wheel about its axis of rotation and an operator's platform mounted on the frame member in fixed relation therewith.
Abstract:
A trailer (T) and a dock (D) are provided with substantially identical slat conveyors (10, 12). Each conveyor (10, 12) has alternating conveyor slats (36, 36′) and lifting/holding slats (38, 38′). The trailer (T) is backed up to the dock (D). Upper portions of the lifting/holding slats (38, 38′) are coupled together at their ends. The confronting ends of the conveying slats (36, 36′) are also coupled together. A mechanism carried by the dock (D) raises and lowers the upper portions of the two sets of lifting/holding slats (38, 38′) a drive mechanism carried by the dock (D) where it reciprocates both sets of conveying slats (36, 36′).
Abstract:
Fixed conveyor slats (12) in the nature of beams extend over a window in a support framework (70, 72, 74, 76, 86, 88) for the movable and fixed slats (10, 12) of the reciprocating slat conveyor. The fixed slats (12) support the movable slats (10), including in the region of the window. The fixed and movable slats (12, 10) are box beams, providing them with strength and stiffness in the region of the window. The fixed slats (12) are covered by planks of bearing material (46). Side portions (14, 16) of the movable slats (10) set down on side portions (50, 48) of the planks of bearing material (46). The planks of bearing material (46) are connected at one end only to the fixed slats (12). The bearing material (46) is capable of withstanding the heat of hot asphalt concrete and protects the fixed slats (12) from contact with the asphalt concrete.