摘要:
An over-voltage protection circuit and methods of operation are provided. In one embodiment, a method includes monitoring a voltage at an output of a rectifier, a voltage at an output of a voltage regulator, or a combination thereof. The method further includes determining the over-voltage condition based on the monitoring; and in response to determining the over-voltage condition, regulating the voltage at the output of the rectifier in accordance with a voltage difference between the voltage at the output of the rectifier and the voltage at the output of the voltage regulator.
摘要:
A power transmitter includes: a first switch coupled between a first node and a reference voltage node; a second switch configured to be coupled between a power supply and the first node; a coil and a capacitor coupled in series between the first node and the reference voltage node; a first sample-and-hold (S&H) circuit having an input coupled to the first node; and a timing control circuit configured to generate a first control signal, a second control signal, and a third control signal that have a same frequency, where the first control signal is configured to turn ON and OFF the first switch alternately, the second control signal is configured to turn ON and OFF the second switch alternately, and where the third control signal determines a sampling time of the first S&H circuit and has a first pre-determined delay from a first edge of the first control signal.
摘要:
Dual power supply and energy recovery techniques are used in a capacitive touch panel that employs a concurrent drive scheme. A dual supply output buffer boosts a capacitor from an intermediate voltage level to a high voltage level. Energy recovery exchanges stored energy between a capacitor and an inductor. When both techniques are used together, power consumption of a capacitive touch panel drive circuit can be reduced dramatically, by as much as about 80%. Such high efficiency touch panels have wide application to ultra-thin touch screens, including those suitable for use in mobile devices and flexible displays.
摘要:
A capacitive discharge circuit includes a line having a capacitance, a switched capacitor circuit including a capacitor, a switched circuit coupled to the line, and a voltage regulator coupled between the switched capacitor circuit and the switched circuit. A controller operates the switched capacitor circuit and switched circuit to in a first phase, charge the capacitor by coupling the capacitor between a common mode and a power supply, and in a second phase, discharge the capacitor by coupling the voltage regulator in series with the capacitor between the power supply node a ground. The controller is also configured to in a third phase, charge the capacitor by coupling the capacitor between the common mode and the power supply, and in a fourth phase, share charge between the line and the capacitor by coupling the voltage regulator and the capacitor in series between the line and the ground.
摘要:
A capacitive discharge circuit includes a line having a capacitance, a switched capacitor circuit including a capacitor, a switched circuit coupled to the line, and a voltage regulator coupled between the switched capacitor circuit and the switched circuit. A controller operates the switched capacitor circuit and switched circuit to in a first phase, charge the capacitor by coupling the capacitor between a common mode and a power supply, and in a second phase, discharge the capacitor by coupling the voltage regulator in series with the capacitor between the power supply node a ground. The controller is also configured to in a third phase, charge the capacitor by coupling the capacitor between the common mode and the power supply, and in a fourth phase, share charge between the line and the capacitor by coupling the voltage regulator and the capacitor in series between the line and the ground.
摘要:
A capacitive discharge circuit includes a line having a capacitance, a switched capacitor circuit including a capacitor, a switched circuit coupled to the line, and a voltage regulator coupled between the switched capacitor circuit and the switched circuit. A controller operates the switched capacitor circuit and switched circuit to in a first phase, charge the capacitor by coupling the capacitor between a common mode and a power supply, and in a second phase, discharge the capacitor by coupling the voltage regulator in series with the capacitor between the power supply node a ground. The controller is also configured to in a third phase, charge the capacitor by coupling the capacitor between the common mode and the power supply, and in a fourth phase, share charge between the line and the capacitor by coupling the voltage regulator and the capacitor in series between the line and the ground.
摘要:
Apparatus and methods to measure capacitance changes for a touch-sensitive capacitive matrix are described. Charge-removal circuits and measurement techniques may be employed to cancel deleterious effects of parasitic capacitances in the touch-sensitive capacitive matrix. Capacitively switching a supply during timed charge removal may be used to cancel unwanted effects due to clock jitter. The apparatus and methods can improve signal-to-noise characteristics, sensitivity, and/or dynamic range for capacitive measurements relating to touch-sensitive capacitive devices.
摘要:
A readout device for a capacitive sense matrix includes a computer readable storage medium configured to store capacitance data. The capacitance data represents capacitance values of the capacitive sense matrix. The readout device also includes a readout circuit configured to receive a signal from the capacitive sense matrix, the readout circuit being configured based upon the capacitance data. Also described are a readout method and a method of compensating for variations in capacitance.
摘要:
Accumulators that operate to fully or partially remove noise from a signal, including removing noise inserted into the signal by the accumulator itself. In some embodiments, an accumulator may be operated in a sampling phase and a transfer phase each time the accumulator samples an input signal. In some such embodiments, an op-amp of an accumulation circuit of the accumulator may be auto-zeroed during some or all of the sampling phases of an accumulation period. In some embodiments in which the op-amp is auto-zeroed during some or all of the sampling phases, the accumulation circuit may include a holding capacitor that, during an auto-zeroing process, holds a value output by the op-amp during a prior transfer phase. Including such a holding capacitor in an accumulator may reduce a voltage that the op-amp output rises following the auto-zero process, which may reduce a bandwidth and noise of the accumulation circuit.
摘要:
Capacitance sensing circuits and methods are provided. A dual mode capacitance sensing circuit includes a capacitance-to-voltage converter having an amplifier and an integration capacitance coupled between an output and an inverting input of the amplifier, and a dual mode switching circuit responsive to mutual mode control signals for a controlling signal supplied from a capacitive touch matrix to the capacitance-to-voltage converter in a mutual capacitance sensing mode and responsive to self mode control signals for controlling signals supplied from the capacitive touch matrix to the capacitance-to-voltage converter in a self capacitance sensing mode, wherein the capacitance sensing circuit is configurable for operation in the mutual capacitance sensing mode or the self capacitance sensing mode.